Abstract

We report on the investigation of discrete Raman fiber amplifier in double-pass configuration based on the dispersion-compensated fiber and high reflection FBG. We proved in simulation and experiments that the double-pass configuration requires nearly 50% less pump power and the same fiber length to provide the same Raman gain and double-dispersion-compensation performance compared to the typical counter-pumped Raman amplifier. We also analyzed the equivalent noise figure (NF) and the Rayleigh backscattering impairments. The theoretical results shown that the impact of multipath interference (MPI) noise is the dominating limitation factor of this system operated at very high Raman gain region.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M N. Islam, �??Raman Amplifiers for Telecommunications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 548- 559 (2002).
    [CrossRef]
  2. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, �??Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,�?? in Tech. Digest of OFC�??02, TuJ7, 66-68, (2002).
  3. Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, �??Cross phase modulation in discrete Raman amplifiers and its reduction,�?? in Tech. Digest of OFC�??00, ThM3-1, 197-199, (2000).
  4. A. K. Srivastava, Y. Sun, �??Advances in Erbium-Doped Fiber Amplifiers,�?? Optical Fiber Telecommunications, IVA, I. P. Kaminow and Tingye Li, ed. (Academic Press, 2002) Chap. 4.
  5. F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, �??All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30x22 dB of TW-RS fiber,�?? IEEE Photonics Technol. Lett. 15, 314 - 316, (2003).
    [CrossRef]
  6. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, �??Pump interactions in a 100-nm bandwidth Raman amplifier,�?? IEEE Photo. Technol. Lett. 11, 530-532, (1999).
    [CrossRef]
  7. A. Pizzinat, M. Santagiustina, and C. Schivo, �??Impact of hybrid EDFA-distributed Raman amplification on 4X40-Gb/s WDM optical communication system,�?? IEEE Photonics Technol. Lett. 15, 341-343, (2003).
    [CrossRef]
  8. S. Namiki and Y. Emori, �??Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,�?? IEEE Sel. Top. Quantum. Electron. 7, 3 �?? 16, (2001).
    [CrossRef]
  9. R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, �??Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,�?? IEEE Photo. Technol. Lett. 14, 914-916, (2002).
    [CrossRef]
  10. R. Winzer, R. J. Essiambre, and J. Bromage, �??Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,�?? in Tech. Digest Optical Fiber Communication Conf. (OFC�??02), ThGG87, 734-735, (2002).
  11. S. Popov, E. Vanin, and G. Jacobsen, �??Influence of polarization mode dispersion value in dispersion-compension fibers on the polarization dependence of Raman gain,�?? Opt. Lett. 27, 848-850 (2002).
    [CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M N. Islam, �??Raman Amplifiers for Telecommunications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 548- 559 (2002).
[CrossRef]

IEEE Photo. Technol. Lett. (2)

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, �??Pump interactions in a 100-nm bandwidth Raman amplifier,�?? IEEE Photo. Technol. Lett. 11, 530-532, (1999).
[CrossRef]

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, �??Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,�?? IEEE Photo. Technol. Lett. 14, 914-916, (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

A. Pizzinat, M. Santagiustina, and C. Schivo, �??Impact of hybrid EDFA-distributed Raman amplification on 4X40-Gb/s WDM optical communication system,�?? IEEE Photonics Technol. Lett. 15, 341-343, (2003).
[CrossRef]

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, �??All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30x22 dB of TW-RS fiber,�?? IEEE Photonics Technol. Lett. 15, 314 - 316, (2003).
[CrossRef]

IEEE Sel. Top. Quantum. Electron. (1)

S. Namiki and Y. Emori, �??Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,�?? IEEE Sel. Top. Quantum. Electron. 7, 3 �?? 16, (2001).
[CrossRef]

Opt. Lett. (1)

Tech. Digest of OFC'00 (1)

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, �??Cross phase modulation in discrete Raman amplifiers and its reduction,�?? in Tech. Digest of OFC�??00, ThM3-1, 197-199, (2000).

Tech. Digest of OFC'02 (1)

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, �??Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,�?? in Tech. Digest of OFC�??02, TuJ7, 66-68, (2002).

Other (2)

A. K. Srivastava, Y. Sun, �??Advances in Erbium-Doped Fiber Amplifiers,�?? Optical Fiber Telecommunications, IVA, I. P. Kaminow and Tingye Li, ed. (Academic Press, 2002) Chap. 4.

R. Winzer, R. J. Essiambre, and J. Bromage, �??Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,�?? in Tech. Digest Optical Fiber Communication Conf. (OFC�??02), ThGG87, 734-735, (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Double-pass discrete Raman amplifier configuration.

Fig. 2.
Fig. 2.

Signal and noise light (ASE and MPI) flows.

Fig. 3.
Fig. 3.

Signal and pump power along the 3-km DCF for double- and single-pass schemes.

Fig. 4.
Fig. 4.

Raman gain versus pump power at double- and single-pass configuration.

Fig. 5.
Fig. 5.

ASE and RB/DRB noise light power versus Raman gain.

Fig. 6.
Fig. 6.

Equivalent NF with/without considering the MPI noise.

Fig. 7.
Fig. 7.

Overall equivalent NF for different reflection ratio R.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

± d P SK dz = α s P SK + g · P SK P Pf
d P Pf dz = α P P Pf g · P SK · P Pf
G Rf ( z 1 , z 2 ) = exp { g P Pf ( 0 ) [ exp ( α P z 1 ) exp ( α P z 2 ) ] α P }
G Rb ( z 1 , z 2 ) = exp { g P Pf ( 0 ) α P [ exp ( α P ( z 2 L ) ) exp ( α P ( z 1 L ) ) ] }
N Sb ASE ( z ) = N Sf ASE ( L ) T ( 0 , L ) G Rb ( 0 , L ) + h υ 0 L z P Pf ( x ) T ( 0 , x ) G Rb ( L x , L ) dx
N Sf ASE ( L ) = h υ 0 L P Pf ( x ) T ( x , L ) G Rf ( x , L ) dx
P Sf RB ( 0 ) = r P Sf ( 0 ) G b ( 0 , L ) 0 L G f ( 0 , z ) G b ( 0 , z ) dz
P Sf DRB ( L ) = r 2 P Sf ( 0 ) G f ( 0 , L ) 0 L 1 G f 2 ( 0 , z ) z L G f 2 ( 0 , x ) dx · dz
P Sb RB ( L ) = r P Sb ( L ) G f ( 0 , L ) 0 L G b ( z , L ) G f ( 0 , z ) dz
P Sb DRB ( 0 ) = r 2 P Sb ( L ) G b ( 0 , L ) 0 L 1 G b 2 ( z , L ) z L G b 2 ( x , L ) dx · dz
NF = 1 G ON OFF [ 2 N Sb ASE ( 0 ) h υ + ( 5 9 ) P RB ( 0 ) h υ ( B e 2 + B s 2 2 ) 1 2 + 1 ]

Metrics