Abstract

We report on the investigation of discrete Raman fiber amplifier in double-pass configuration based on the dispersion-compensated fiber and high reflection FBG. We proved in simulation and experiments that the double-pass configuration requires nearly 50% less pump power and the same fiber length to provide the same Raman gain and double-dispersion-compensation performance compared to the typical counter-pumped Raman amplifier. We also analyzed the equivalent noise figure (NF) and the Rayleigh backscattering impairments. The theoretical results shown that the impact of multipath interference (MPI) noise is the dominating limitation factor of this system operated at very high Raman gain region.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous monitoring technique for ASE and MPI noises in distributed Raman amplified systems

H. Y. Choi, S. B. Jun, S. K. Shin, and Y. C. Chung
Opt. Express 15(14) 8660-8666 (2007)

Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band

Kazuya Sasaki, Shailendra K. Varshney, Keisuke Wada, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 15(5) 2654-2668 (2007)

Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier

Jingchi Cheng, Ming Tang, Alan Pak Tao Lau, Chao Lu, Liang Wang, Zhenhua Dong, Syed Muhammad Bilal, Songnian Fu, Perry Ping Shum, and Deming Liu
Opt. Express 23(9) 11838-11854 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M N. Islam, “Raman Amplifiers for Telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
    [Crossref]
  2. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).
  3. Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).
  4. A. K. Srivastava and Y. Sun, “Advances in Erbium-Doped Fiber Amplifiers,” Optical Fiber Telecommunications, IVA, I. P. Kaminow and Tingye Li, ed. (Academic Press, 2002) Chap. 4.
  5. F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
    [Crossref]
  6. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
    [Crossref]
  7. A. Pizzinat, M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on 4×40-Gb/s WDM optical communication system,” IEEE Photonics Technol. Lett. 15, 341–343, (2003).
    [Crossref]
  8. S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Sel. Top. Quantum. Electron. 7, 3–16 (2001).
    [Crossref]
  9. R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
    [Crossref]
  10. R. Winzer, R. J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,” in Tech. Digest Optical Fiber Communication Conf. (OFC’02), ThGG87, 734–735, (2002).
  11. S. Popov, E. Vanin, and G. Jacobsen, “Influence of polarization mode dispersion value in dispersion-compension fibers on the polarization dependence of Raman gain,” Opt. Lett. 27, 848–850 (2002).
    [Crossref]

2003 (2)

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

A. Pizzinat, M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on 4×40-Gb/s WDM optical communication system,” IEEE Photonics Technol. Lett. 15, 341–343, (2003).
[Crossref]

2002 (3)

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
[Crossref]

S. Popov, E. Vanin, and G. Jacobsen, “Influence of polarization mode dispersion value in dispersion-compension fibers on the polarization dependence of Raman gain,” Opt. Lett. 27, 848–850 (2002).
[Crossref]

M N. Islam, “Raman Amplifiers for Telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[Crossref]

2001 (1)

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Sel. Top. Quantum. Electron. 7, 3–16 (2001).
[Crossref]

1999 (1)

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

Akasaka, Y.

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).

Bromage, J.

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
[Crossref]

R. Winzer, R. J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,” in Tech. Digest Optical Fiber Communication Conf. (OFC’02), ThGG87, 734–735, (2002).

Emori, Y.

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Sel. Top. Quantum. Electron. 7, 3–16 (2001).
[Crossref]

Essiambre, R. J.

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
[Crossref]

R. Winzer, R. J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,” in Tech. Digest Optical Fiber Communication Conf. (OFC’02), ThGG87, 734–735, (2002).

Forghieri, F.

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

Griseri, E.

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

Hirano, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Ho, M. C.

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).

Islam, M N.

M N. Islam, “Raman Amplifiers for Telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[Crossref]

Jacobsen, G.

Karui, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Kazovsky, L. G.

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).

Kidorf, H.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

Kim, C. H.

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
[Crossref]

Ma, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

Marhic, M.

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).

Meli, F.

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

Miyamoto, T.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Morita, I.

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).

Namiki, S.

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Sel. Top. Quantum. Electron. 7, 3–16 (2001).
[Crossref]

Nissov, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

Okuno, T.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Onishi, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Pasquale, F. D.

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

Pizzinat, A.

A. Pizzinat, M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on 4×40-Gb/s WDM optical communication system,” IEEE Photonics Technol. Lett. 15, 341–343, (2003).
[Crossref]

Popov, S.

Rabarijaona, E.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

Rottwitt, K.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

Santagiustina, M.

A. Pizzinat, M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on 4×40-Gb/s WDM optical communication system,” IEEE Photonics Technol. Lett. 15, 341–343, (2003).
[Crossref]

Schivo, C.

A. Pizzinat, M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on 4×40-Gb/s WDM optical communication system,” IEEE Photonics Technol. Lett. 15, 341–343, (2003).
[Crossref]

Sguazzotti, A.

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

Shigematsu, M.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Srivastava, A. K.

A. K. Srivastava and Y. Sun, “Advances in Erbium-Doped Fiber Amplifiers,” Optical Fiber Telecommunications, IVA, I. P. Kaminow and Tingye Li, ed. (Academic Press, 2002) Chap. 4.

Sun, Y.

A. K. Srivastava and Y. Sun, “Advances in Erbium-Doped Fiber Amplifiers,” Optical Fiber Telecommunications, IVA, I. P. Kaminow and Tingye Li, ed. (Academic Press, 2002) Chap. 4.

Tosetti, C.

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

Tsuzaki, T.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Vanin, E.

Winzer, P.

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
[Crossref]

Winzer, R.

R. Winzer, R. J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,” in Tech. Digest Optical Fiber Communication Conf. (OFC’02), ThGG87, 734–735, (2002).

IEEE J. Sel. Top. Quantum Electron. (1)

M N. Islam, “Raman Amplifiers for Telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[Crossref]

IEEE Photo. Technol. Lett. (2)

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photo. Technol. Lett. 11, 530–532 (1999).
[Crossref]

R. J. Essiambre, P. Winzer, J. Bromage, and C. H. Kim, “Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering,” IEEE Photo. Technol. Lett. 14, 914–916 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Pizzinat, M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on 4×40-Gb/s WDM optical communication system,” IEEE Photonics Technol. Lett. 15, 341–343, (2003).
[Crossref]

F. D. Pasquale, F. Meli, E. Griseri, A. Sguazzotti, C. Tosetti, and F. Forghieri, “All-Raman transmission of 192 25-GHz spaced WDM channels at 10.66 Gb/s over 30×22 dB of TW-RS fiber,” IEEE Photonics Technol. Lett. 15, 314–316, (2003).
[Crossref]

IEEE Sel. Top. Quantum. Electron. (1)

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Sel. Top. Quantum. Electron. 7, 3–16 (2001).
[Crossref]

Opt. Lett. (1)

Other (4)

R. Winzer, R. J. Essiambre, and J. Bromage, “Combined impact of double-Rayleigh backscatter and Amplified spontaneous emission on receiver noise,” in Tech. Digest Optical Fiber Communication Conf. (OFC’02), ThGG87, 734–735, (2002).

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Karui, M. Hirano, M. Onishi, and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,” in Tech. Digest of OFC’02, TuJ7, 66–68, (2002).

Y. Akasaka, I. Morita, M. Marhic, M. C. Ho, and L. G. Kazovsky, “Cross phase modulation in discrete Raman amplifiers and its reduction,” in Tech. Digest of OFC’00, ThM3-1, 197–199, (2000).

A. K. Srivastava and Y. Sun, “Advances in Erbium-Doped Fiber Amplifiers,” Optical Fiber Telecommunications, IVA, I. P. Kaminow and Tingye Li, ed. (Academic Press, 2002) Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Double-pass discrete Raman amplifier configuration.

Fig. 2.
Fig. 2.

Signal and noise light (ASE and MPI) flows.

Fig. 3.
Fig. 3.

Signal and pump power along the 3-km DCF for double- and single-pass schemes.

Fig. 4.
Fig. 4.

Raman gain versus pump power at double- and single-pass configuration.

Fig. 5.
Fig. 5.

ASE and RB/DRB noise light power versus Raman gain.

Fig. 6.
Fig. 6.

Equivalent NF with/without considering the MPI noise.

Fig. 7.
Fig. 7.

Overall equivalent NF for different reflection ratio R.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

± d P SK dz = α s P SK + g · P SK P Pf
d P Pf dz = α P P Pf g · P SK · P Pf
G Rf ( z 1 , z 2 ) = exp { g P Pf ( 0 ) [ exp ( α P z 1 ) exp ( α P z 2 ) ] α P }
G Rb ( z 1 , z 2 ) = exp { g P Pf ( 0 ) α P [ exp ( α P ( z 2 L ) ) exp ( α P ( z 1 L ) ) ] }
N Sb ASE ( z ) = N Sf ASE ( L ) T ( 0 , L ) G Rb ( 0 , L ) + h υ 0 L z P Pf ( x ) T ( 0 , x ) G Rb ( L x , L ) dx
N Sf ASE ( L ) = h υ 0 L P Pf ( x ) T ( x , L ) G Rf ( x , L ) dx
P Sf RB ( 0 ) = r P Sf ( 0 ) G b ( 0 , L ) 0 L G f ( 0 , z ) G b ( 0 , z ) dz
P Sf DRB ( L ) = r 2 P Sf ( 0 ) G f ( 0 , L ) 0 L 1 G f 2 ( 0 , z ) z L G f 2 ( 0 , x ) dx · dz
P Sb RB ( L ) = r P Sb ( L ) G f ( 0 , L ) 0 L G b ( z , L ) G f ( 0 , z ) dz
P Sb DRB ( 0 ) = r 2 P Sb ( L ) G b ( 0 , L ) 0 L 1 G b 2 ( z , L ) z L G b 2 ( x , L ) dx · dz
NF = 1 G ON OFF [ 2 N Sb ASE ( 0 ) h υ + ( 5 9 ) P RB ( 0 ) h υ ( B e 2 + B s 2 2 ) 1 2 + 1 ]

Metrics