Abstract

Integral imaging has been attracting considerable attention recently because of its advantages that include full parallax, continuous view-points and real-time full-color operation. However, the thickness of the displayed three-dimensional image is limited to a relatively small value due to the degradation of image resolution. A method is proposed here to provide observers with an enhanced perception of depth without severe degradation of resolution by taking advantage of the birefringence of a uniaxial crystal plate. The proposed integral imaging system can display images integrated around three central depth planes by dynamically altering the polarization and controlling both the elemental images and the dynamic slit array mask accordingly. The principle of the proposed method is described and is then verified experimentally.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Lippmann, �??La photographie integrale,�?? Comptes-Rendus Acad. Sci. 146, 446-451 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, �??Real-time pickup method for a three-dimensional image based on integral photography,�?? Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  3. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, �??Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,�?? J. Opt. Soc. Am. A. 18, 1814-1821 (2001).
    [CrossRef]
  4. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, "Analysis of viewing parameters for two display methods based on integral photography," Appl. Opt. 40, 5217-5232 (2001).
    [CrossRef]
  5. L. Erdmann and K. J. Gabriel, �??High-resolution digital integral photography by use of a scanning microlens array,�?? Appl. Opt. 40, 5592-5599 (2001).
    [CrossRef]
  6. B. Lee, S. Jung, S.-W. Min, and J.-H. Park, "Three-dimensional display using integral photography with dynamically variable image planes," Opt. Lett. 26, 1481-1482 (2001).
    [CrossRef]
  7. T. Naemura, T. Yoshida, and H. Harashima, �??3-D computer graphics based on integral photography,�?? Opt. Express 8, 255-262 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-4-255.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-4-255.</a>
    [CrossRef] [PubMed]
  8. S.-W. Min, B. Javidi, and B. Lee, "Enhanced three-dimensional integral imaging system by use of double display devices," Appl. Opt. 42, 4186-4195 (2003).
    [CrossRef] [PubMed]
  9. B. Lee, S. Jung, and J. -H. Park, �??Viewing-angle-enhanced integral imaging using lens switching,�?? Opt. Lett. 27, 818-820 (2002).
    [CrossRef]
  10. S.-W, Min, S. Jung, J.-H. Park, and B. Lee, "Study for wide-viewing integral photography using an aspheric Fresnel-lens array," Opt. Eng. 41, 2572-2576 (2002).
    [CrossRef]
  11. H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, "Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays," Opt. Express. 11, 927-932 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927.</a>
    [CrossRef] [PubMed]
  12. S. Jung, J.-H. Park, H. Choi, and B. Lee, "Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching," Appl. Opt. 42, 2513-2520 (2003).
    [CrossRef] [PubMed]
  13. S. Sanyal, and A. Ghosh, �??High focal depth with a quasi-bifocus birefringent lens,�?? Appl. Opt. 39, 2321-2325 (2000).
    [CrossRef]
  14. J. Lesso, A. Duncan, W. Sibbett, and M. Padgett, �??Aberrations introduced by a lens made from a birefringent material,�?? Appl. Opt. 39, 592-598 (2000).
    [CrossRef]
  15. H. Kikuta and K. Iwata, �??First-order aberration of a double-focus lens made of a uniaxial crystal,�?? J. Opt. Soc. Am. A 9, 814-819 (1992).
    [CrossRef]
  16. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York,1990).
  17. A. Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, Yew York, 1983).
  18. J.-S. Jang and B. Javidi, �??Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,�?? Opt. Lett. 27, 324-326 (2002).
    [CrossRef]

Appl. Opt (1)

L. Erdmann and K. J. Gabriel, �??High-resolution digital integral photography by use of a scanning microlens array,�?? Appl. Opt. 40, 5592-5599 (2001).
[CrossRef]

Appl. Opt. (6)

Comptes-Rendus Acad. Sci. (1)

G. Lippmann, �??La photographie integrale,�?? Comptes-Rendus Acad. Sci. 146, 446-451 (1908).

J. Opt. Soc. Am A (1)

H. Kikuta and K. Iwata, �??First-order aberration of a double-focus lens made of a uniaxial crystal,�?? J. Opt. Soc. Am. A 9, 814-819 (1992).
[CrossRef]

J. Opt. Soc. Am. A. (1)

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, �??Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,�?? J. Opt. Soc. Am. A. 18, 1814-1821 (2001).
[CrossRef]

Opt. Eng. (1)

S.-W, Min, S. Jung, J.-H. Park, and B. Lee, "Study for wide-viewing integral photography using an aspheric Fresnel-lens array," Opt. Eng. 41, 2572-2576 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Optics express (1)

T. Naemura, T. Yoshida, and H. Harashima, �??3-D computer graphics based on integral photography,�?? Opt. Express 8, 255-262 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-4-255.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-4-255.</a>
[CrossRef] [PubMed]

Other (2)

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York,1990).

A. Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, Yew York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Basic concept of InIm

Fig. 2.
Fig. 2.

Configuration of the proposed InIm system

Fig. 3.
Fig. 3.

Longitudinal shift caused by the glass plate

Fig. 4.
Fig. 4.

Imaging system consisting of a uniaxial crystal plate and a single lens.

Fig. 5.
Fig. 5.

Propagation of the ray through the uniaxial crystal plate (a) Propagation of the horizontally incident rays (i.e. the plane of incidence is perpendicular to the optic axis of the uniaxial crystal) (b) k-surface for the horizontally incident rays (c) Propagation of the vertically incident rays (i.e., the plane of incidence is parallel to the optic axis of the uniaxial crystal) (d) k-surface for the vertically incident rays

Fig. 6.
Fig. 6.

Imaging properties of the optical system consisting of a uniaxial crystal plate and a single lens

Fig. 7.
Fig. 7.

Configuration for locating a point image at the extraordinary-vertical mode image plane

Fig. 8.
Fig. 8.

Geometry for calculating the horizontal position of the point source for a given image point at the extraordinary-vertical mode image plane

Fig. 9.
Fig. 9.

Integrated images by conventional InIm (a) central depth plane is placed at 9.5 cm from the lens array (b) central depth plane is placed at 21 cm from the lens array

Fig. 10.
Fig. 10.

Integrated images by the proposed method (a) extraordinary-horizontal mode(9.5 cm) (b) ordinary mode(13cm) (c) extraordinary-vertical mode(21 cm)

Fig. 11.
Fig. 11.

Experimental setup used for non-mechanical realization

Fig. 12.
Fig. 12.

Integrated images of different depths. Left apple images are located at 140 mm from the lens array and right apple images are located at 243 mm (a) integrated by the conventional method (b) integrated by the proposed method.

Tables (1)

Tables Icon

Table 1. Specifications of the experimental setup Setup

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ z = d ( 1 cos θ i n glass 2 sin 2 θ i ) d ( 1 1 n glass ) ,
Δ z o = d ( 1 cos θ i n o 2 sin 2 θ i ) d ( 1 1 n o ) ,
l o = f ( g Δ z o ) g Δ z o f f [ g n o d ( n o 1 ) ] g n o d ( n o 1 ) f n o ,
1 n e 2 ( ϕ ) = cos 2 ϕ n o 2 + sin 2 ϕ n e 2 ,
Δ z eh = d ( 1 cos θ i n e 2 sin 2 θ i ) d ( 1 1 n e ) ,
l eh = f ( g Δ z eh ) g Δ z eh f f [ g n e d ( n e 1 ) ] g n e d ( n e 1 ) f n e .
tan ( θ ev ) = sin 2 θ i n e 2 1 sin 2 θ i n o 2 .
tan ( θ ev ) = n e 2 n o 2 tan ( θ ev ) .
Δ z ev = d ( 1 n e cos θ i n o n o 2 sin 2 θ i ) d ( 1 n e n o 2 ) ,
l ev = f ( g Δ z ev ) g Δ z ev f [ g d ( 1 n e n o 2 ) ] f g d ( 1 n e n o 2 ) f .
x v x h : x h u = l ev l eh : l eh ,
x = g Δ z eh l eh x h = Δ z eh g l ev ( x v u ) + Δ z eh g + f f u ,

Metrics