Abstract

A short-separation, optical reflectance probe has been developed to assist the neurosurgeon in functional neurosurgery for accurate localization of the surgical target. Because of the scattering nature of tissue, the optical probe has a “Look Ahead Distance” (LAD), at which the measured optical reflectance starts to “see” or “sense” the underlying brain structure due to the difference in light scattering of tissue. To quantify the LAD, 2-layer laboratory phantoms have been developed to mimic gray and white matter of the brain, and Monte Carlo simulations have been also used to confirm the experimental findings. Based on both the laboratory and simulation results, a quantitative empirical equation is developed to express the LAD as a function of scattering coefficient of the measured tissue for a 400-micron-diameter fiber probe. The quantified LAD of the probe is highly desirable so as to improve the spatial resolution of the probe for better surgery guidance.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. G. Nichols, E. L. Hull, and T. H. Foster, �?? Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,�?? Appl. Opt. 36, 93-103 (1997)
    [CrossRef] [PubMed]
  2. T. J. Farrell and M. S. Patterson �??A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,�?? Med. Phys. 19, 880-888 (1992).
    [CrossRef]
  3. M. Johns, Cole A. Giller, and H. Liu, �??Computational and in vivo Investigation of Optical Reflectance from Human Brain to Assist Neurosurgery,�?? J. Biomed. Opt. 3, 437-445 (1998).
    [CrossRef] [PubMed]
  4. D. A. Benaron, W. Cheong, J. L. Duckworth, K. Noles, C. Nezhat, D. Seidman, S. R. Hintz, C. J. Levinson, A. L. Murphy, J. W. Price, F. W. H. Liu, D. K. Stevenson, E. L. Kermit, OSA TOPS 22, 30-34 (1998).
  5. R. Richards-Kortum, �??Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996)
    [CrossRef] [PubMed]
  6. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson and T. Shimada, Lasers Surg. Med., 17, 350-357 (1995).
    [CrossRef] [PubMed]
  7. J. R. Mourant, T. Johnson, G. Los, and I. J. Bigio, Phys. Med. Biol. 44, 1397-1417 (1999).
    [CrossRef] [PubMed]
  8. L. Reynolds, C. Johnson, and A. Ishimaru, �??Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optical catheters,�?? Appl. Opt. 15, 2059-2067 (1976)
    [CrossRef] [PubMed]
  9. J.M. Steinake and A.P. shepherd, �?? Diffusion model of the optical absorbance of whole blood,�?? J. Opt. Soc. Am. A 7, 813-822 (1998)
  10. B .J. Tromberg, R. C. Haskell, S. J. Madson, and L. O. Svaasand, �?? Characterization of tissue optical properties using photon density waves,�?? Comments Mol. Cell. Biophys. 8, 359-385 (1995).
  11. C.E. Elwell, M. Cope, A.D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O.R. Reynolds, �??Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,�?? J. Appl. Physiol. 77, 2753-2760 (1994)
    [PubMed]
  12. B. Chance, �??Near-infrared images using continuous , phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,�?? Ann. N. Y. Acad. Sci. 839, 29-45 (1998)
    [CrossRef]
  13. J. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M .A. Franceschini-Fantini, and E. Gratton, �??Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,�?? Appl. Opt. 34, 1143-1155 (1995)
    [CrossRef] [PubMed]
  14. R. A. Weersink, J. E. Hayward , K. R. Diamond, and M. S. Patterson, �??Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,�?? Photochem. Photobiol. 66, 326-335 (1997)
    [CrossRef] [PubMed]
  15. B. Beauvoit, S. M. Evans, T. W. Jenkins, E. E. Miller, and B. Chance, �??Correlation between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent Tumors,�?? Anal. Biochem. 226, 167-174, (1995).
    [CrossRef] [PubMed]
  16. A. M. K. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,�?? Appl. Opt., 37, 1256-1267 (1998)
    [CrossRef]
  17. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, �??Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,�?? Appl. Opt., 38, 6628- 6637 (1999).
    [CrossRef]
  18. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, �??Mechanisms of ligh scattering from biological cells relevant to noninvasive optical-tissue diagnostics,�?? Appl. Opt., 37, 3586- 3593 (1998)
    [CrossRef]
  19. H. Jiang, J. Pierce, J. Kao, and E. Sevick-Muraca, �??Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques,�?? Appl. Opt., 36, p3310-3318 (1997).
    [CrossRef] [PubMed]
  20. H. Jiang, G. Marquez and L. V. Wang, �??Particle sizing in concentrated suspensions by use of steady-state, continuous-wave photon-migration techniques,�?? Opt. Lett., 23 (5), 394 -396 (1998)
    [CrossRef]
  21. N. Sato, K. Takenobu, S. Motoaki, K. Sunao, A. Hiroshi, and B. Hagihara, �?? Measurement hemoperfusion and oxygen sufficiency in gastric mucosa in vivo,�?? Gastroenterology 76, 814-819 (1979)
    [PubMed]
  22. W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, �??Reflectance spectroscopy of pancreatic microcirculation,�?? J. Appl. Physiol. 80, 116-123 (1996)
    [PubMed]
  23. M. Ikeda and A. Matsushita, �??Reflectance of rat brain structures mapped by an optical fiber technique,�?? J. Neurosci. Methods 2, 9-17 (1980)
    [CrossRef] [PubMed]
  24. R. Marchesini, M Brambilla,C.Clemente, M.Maniezzo, A.E.Sichirollo, A.Testori,.D.R.Venturoli, and N.Cascinelli, �??In vivo spectrophotometric evalution of neoplastic and non-neoplastic skin pigmented lesions. I. Reflectance measurements,�?? Photochem. Photobiol. 53, 77-84 (1991).
    [CrossRef] [PubMed]
  25. J.R. Mourant, I.J. Bigio, J. Boyer, T.M. Johnson, and T. Shimada, �??Spectroscopic diagnosis of bladder cancer with elastic light scattering,�?? Lasers Surg. Med. 17, 350-357 (1995)
    [CrossRef] [PubMed]
  26. J.R. Mourant I.J. Bigio, J. Boyer, T.M. Johnson , and J Lacey, �??Elastic scattering spectroscopy as a diagnostic for differentiating pathologies in the gastrointestinal tract: preliminary testing,�?? J. Biomed. Opt. 1, 192-199 (1996)
    [CrossRef] [PubMed]
  27. Z.Ge, K.T. Schomacker, and N.S. Nishioka, �??Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques,�?? Appl. Spectrosc. 52, 833-839 (1988).
    [CrossRef]
  28. C. A. Giller, M. Johns, H. Liu, �??Use of an intracranial near-infrared probe for localization during stereotactic surgery for movement disorders,�?? J. Neurosurg. 93, 498- 505 (2000).
    [CrossRef] [PubMed]
  29. C. A. Giller, H. Liu, P. Gurnani, S. Victor, U. Yazdani, and D. C. German, �??Validation of a near-infrared probe for detection of thin intracranial white matter structures,�?? J. Neurosurg. 98, 1299-1306 (2003)
    [CrossRef] [PubMed]
  30. J. R. Mourant, T. M. Johnson, G. Los, and I. J. Bigio, �??Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,�?? Phys. Med. Biol. 44, 1397�??1417 (1999)
    [CrossRef] [PubMed]
  31. L. H. Wang, S. L. Jacques, and L. Q. Zheng, �??MCML-Monte Carlo modeling of photon transport in multilayered tissues,�?? Comput. Methods Programs Biomed. 47, 131-146 (1995)
    [CrossRef] [PubMed]
  32. L. H. Wang, S. L. Jacques, and L. Q. Zheng,�??CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,�?? Comput. Methods Programs Biomed. 54, 142-150 (1997)
    [CrossRef]
  33. F.P. Bolin, L.E. Preuss, R.C. Taylor , and R.J. Ference, �?? Refractive index of some mammalian tissue using fiber optic cladding method,�?? Appl. Opt. 28, 2297-2303 (1989)
    [CrossRef] [PubMed]
  34. F.Bevilacqua, D.Piguet,P. marguet, J.D. Gross, B.J. Tromberg, and C. Depeursinge, �??In vivo local determination of tissue optical properties : applications to human brain,�?? Appl. Opt. 38, 4939-4950 (1999)
    [CrossRef]
  35. Maureen Johns and Hanli Liu, �??Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal,�?? SPIE Proc. 4958, to appear, 2003
    [CrossRef]
  36. A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, and S. L. Jacques, �??Time Resolved Photon Emission from Layered Turbid Media,�?? Appl. Opt. 35, 719-728 (1996)
    [CrossRef] [PubMed]
  37. B.C. Wilson and S.L. Jacques �??Optical reflectance and transmittance of tissue: Principle and Applications,�?? Journal of quantum electronics. 26, 2186-2199 (1990)
    [CrossRef]
  38. Prem Gurnani, �??Near Infrared Spectroscopic Measurement of Human and Animal Brain Structures,�?? M.S. Thesis, The University of Texas at Arlington, Arlington, TX, May 2003

Anal. Biochem. (1)

B. Beauvoit, S. M. Evans, T. W. Jenkins, E. E. Miller, and B. Chance, �??Correlation between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent Tumors,�?? Anal. Biochem. 226, 167-174, (1995).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci. (1)

B. Chance, �??Near-infrared images using continuous , phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,�?? Ann. N. Y. Acad. Sci. 839, 29-45 (1998)
[CrossRef]

Annu. Rev. Phys. Chem (1)

R. Richards-Kortum, �??Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996)
[CrossRef] [PubMed]

Appl. Opt. (10)

L. Reynolds, C. Johnson, and A. Ishimaru, �??Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optical catheters,�?? Appl. Opt. 15, 2059-2067 (1976)
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, and T. H. Foster, �?? Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,�?? Appl. Opt. 36, 93-103 (1997)
[CrossRef] [PubMed]

J. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M .A. Franceschini-Fantini, and E. Gratton, �??Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,�?? Appl. Opt. 34, 1143-1155 (1995)
[CrossRef] [PubMed]

A. M. K. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,�?? Appl. Opt., 37, 1256-1267 (1998)
[CrossRef]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, �??Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,�?? Appl. Opt., 38, 6628- 6637 (1999).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, �??Mechanisms of ligh scattering from biological cells relevant to noninvasive optical-tissue diagnostics,�?? Appl. Opt., 37, 3586- 3593 (1998)
[CrossRef]

H. Jiang, J. Pierce, J. Kao, and E. Sevick-Muraca, �??Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques,�?? Appl. Opt., 36, p3310-3318 (1997).
[CrossRef] [PubMed]

F.P. Bolin, L.E. Preuss, R.C. Taylor , and R.J. Ference, �?? Refractive index of some mammalian tissue using fiber optic cladding method,�?? Appl. Opt. 28, 2297-2303 (1989)
[CrossRef] [PubMed]

F.Bevilacqua, D.Piguet,P. marguet, J.D. Gross, B.J. Tromberg, and C. Depeursinge, �??In vivo local determination of tissue optical properties : applications to human brain,�?? Appl. Opt. 38, 4939-4950 (1999)
[CrossRef]

A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, and S. L. Jacques, �??Time Resolved Photon Emission from Layered Turbid Media,�?? Appl. Opt. 35, 719-728 (1996)
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Comments Mol. Cell. Biophys (1)

B .J. Tromberg, R. C. Haskell, S. J. Madson, and L. O. Svaasand, �?? Characterization of tissue optical properties using photon density waves,�?? Comments Mol. Cell. Biophys. 8, 359-385 (1995).

Comput. Methods Programs Biomed. (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, �??MCML-Monte Carlo modeling of photon transport in multilayered tissues,�?? Comput. Methods Programs Biomed. 47, 131-146 (1995)
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng,�??CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,�?? Comput. Methods Programs Biomed. 54, 142-150 (1997)
[CrossRef]

Gastroenterology (1)

N. Sato, K. Takenobu, S. Motoaki, K. Sunao, A. Hiroshi, and B. Hagihara, �?? Measurement hemoperfusion and oxygen sufficiency in gastric mucosa in vivo,�?? Gastroenterology 76, 814-819 (1979)
[PubMed]

J. Appl. Physiol. (2)

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, �??Reflectance spectroscopy of pancreatic microcirculation,�?? J. Appl. Physiol. 80, 116-123 (1996)
[PubMed]

C.E. Elwell, M. Cope, A.D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O.R. Reynolds, �??Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,�?? J. Appl. Physiol. 77, 2753-2760 (1994)
[PubMed]

J. Biomed. Opt. (2)

M. Johns, Cole A. Giller, and H. Liu, �??Computational and in vivo Investigation of Optical Reflectance from Human Brain to Assist Neurosurgery,�?? J. Biomed. Opt. 3, 437-445 (1998).
[CrossRef] [PubMed]

J.R. Mourant I.J. Bigio, J. Boyer, T.M. Johnson , and J Lacey, �??Elastic scattering spectroscopy as a diagnostic for differentiating pathologies in the gastrointestinal tract: preliminary testing,�?? J. Biomed. Opt. 1, 192-199 (1996)
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

M. Ikeda and A. Matsushita, �??Reflectance of rat brain structures mapped by an optical fiber technique,�?? J. Neurosci. Methods 2, 9-17 (1980)
[CrossRef] [PubMed]

J. Neurosurg. (2)

C. A. Giller, M. Johns, H. Liu, �??Use of an intracranial near-infrared probe for localization during stereotactic surgery for movement disorders,�?? J. Neurosurg. 93, 498- 505 (2000).
[CrossRef] [PubMed]

C. A. Giller, H. Liu, P. Gurnani, S. Victor, U. Yazdani, and D. C. German, �??Validation of a near-infrared probe for detection of thin intracranial white matter structures,�?? J. Neurosurg. 98, 1299-1306 (2003)
[CrossRef] [PubMed]

J. Opt. Soc. Am. A. (1)

J.M. Steinake and A.P. shepherd, �?? Diffusion model of the optical absorbance of whole blood,�?? J. Opt. Soc. Am. A 7, 813-822 (1998)

Journal of quantum electronics (1)

B.C. Wilson and S.L. Jacques �??Optical reflectance and transmittance of tissue: Principle and Applications,�?? Journal of quantum electronics. 26, 2186-2199 (1990)
[CrossRef]

Lasers Surg. Med. (2)

J.R. Mourant, I.J. Bigio, J. Boyer, T.M. Johnson, and T. Shimada, �??Spectroscopic diagnosis of bladder cancer with elastic light scattering,�?? Lasers Surg. Med. 17, 350-357 (1995)
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson and T. Shimada, Lasers Surg. Med., 17, 350-357 (1995).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell and M. S. Patterson �??A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,�?? Med. Phys. 19, 880-888 (1992).
[CrossRef]

Opt. Lett. (1)

OSA TOPS (1)

D. A. Benaron, W. Cheong, J. L. Duckworth, K. Noles, C. Nezhat, D. Seidman, S. R. Hintz, C. J. Levinson, A. L. Murphy, J. W. Price, F. W. H. Liu, D. K. Stevenson, E. L. Kermit, OSA TOPS 22, 30-34 (1998).

Photochem. Photobiol. (2)

R. A. Weersink, J. E. Hayward , K. R. Diamond, and M. S. Patterson, �??Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,�?? Photochem. Photobiol. 66, 326-335 (1997)
[CrossRef] [PubMed]

R. Marchesini, M Brambilla,C.Clemente, M.Maniezzo, A.E.Sichirollo, A.Testori,.D.R.Venturoli, and N.Cascinelli, �??In vivo spectrophotometric evalution of neoplastic and non-neoplastic skin pigmented lesions. I. Reflectance measurements,�?? Photochem. Photobiol. 53, 77-84 (1991).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

J. R. Mourant, T. M. Johnson, G. Los, and I. J. Bigio, �??Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,�?? Phys. Med. Biol. 44, 1397�??1417 (1999)
[CrossRef] [PubMed]

J. R. Mourant, T. Johnson, G. Los, and I. J. Bigio, Phys. Med. Biol. 44, 1397-1417 (1999).
[CrossRef] [PubMed]

Proc. SPIE (1)

Maureen Johns and Hanli Liu, �??Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal,�?? SPIE Proc. 4958, to appear, 2003
[CrossRef]

Other (1)

Prem Gurnani, �??Near Infrared Spectroscopic Measurement of Human and Animal Brain Structures,�?? M.S. Thesis, The University of Texas at Arlington, Arlington, TX, May 2003

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig.1.
Fig.1.

Demonstration of the Look Ahead Distance (LAD) for a small separation probe. The dashed profile curve outlines the tissue volume that is interrogated by the light pattern, and d is the separation of the source and detector fibers.

Fig. 2.
Fig. 2.

Monte Carlo simulation model: the top and bottom layer have a thickness of 10 mm and 13 mm, respectively. Region 1 represents the top entry medium, Region 2 is for the top layer, and Region 3 is for the bottom layer.

Fig. 3.
Fig. 3.

Simulated reflectance versus depth for determination of the LAD using a 2-layer model. The top layer is 10 mm thick as white matter with µs’=10 cm-1 and µa=0.1 cm-1, and the bottom layer is 13 mm as gray matter with µs’=5 cm-1 and µa=0.2 cm-1. The data points were normalized to the reflectance at 7 mm with a source-detection fiber separation of 400 microns.

Fig. 4.
Fig. 4.

Simulated reflectance output versus depth for determination of the LAD of another 2-layer model. The top layer is 10 mm as gray matter with µs’=5 cm-1 and µa=0.2 cm-1, and the bottom layer measured is from 10 mm to 11 mm as white matter with µs’=10 cm-1 and µa=0.1 cm-1. The data points from 5 mm to 13 mm depths were normalized to the reflectance at 7 mm. The separation is 400 microns between the source and detection fiber.

Fig. 5.
Fig. 5.

The experimental setup consists of (1) an optical probe containing two 400-µm fibers, (2) a data acquisition card, (3) a USB CCD spectrometer, (4) a broadband light source, (5) a power supply and control for the actuator, (6) an automatic linear actuator, (7) a laboratory tissue phantom, (8) a laptop computer, and (9) a cross section of the fiber probe.

Fig. 6.
Fig. 6.

Experimental results of normalized slope output versus depth for determination of the LAD of a 2-layer model. (a): the top layer is a simulated white matter, and bottom layer is a simulated gray matter. (b): the top layer is a simulated gray matter and bottom is a white matter. The data points were normalized at 7 mm. The source-detector fiber separation is 400 microns.

Fig. 7.
Fig. 7.

The relationship of the LAD and the scattering property of top layer, µs′. Four series of the data points shown were the average LADs obtained from the four solid bottom layers with different Intralipid concentrations as the top layers. The fitting curve gives the quantitative LAD equation, eq. (1), for the Intralipid-Gelatin phantom model.

Fig. 8
Fig. 8

Experimentally determined LADs using gelatin-gelatin and intralipid—gelatin models.

Fig. 9.
Fig. 9.

Comparison of the LADs obtained from both the simulation and the fitting equation.

Tables (2)

Tables Icon

Table 1. The Look-ahead distance (LAD) determined from Monte Carlo simulations. The top layer was 10 mm thick, and the bottom layer was 13 mm with g=0.9 and n=1.38.

Tables Icon

Table 2. Values of the observed LADs (400-micron fiber probe). TL: top layer; BL: bottom layer; IL: Intralipid. Number of measurements=4 for each group

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LAD 750 -nm = 0.70 ln ( μ s ) + 2.26
LAD NIR = 0.75 ln ( μ s ) + 2.22
LAD NIR ( 100 -μm ) = 0.44 ln ( μ s ) + 1.30 ,

Metrics