Abstract

We show that multiple reabsorption of resonance-frequency photons in a cloud of evanescent-wave cooled atoms can have a significant influence on the cooling efficiency and maximum value of the atomic phase-space density.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995).
    [CrossRef]
  2. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface Trap for Cs atoms based on Evanescent-Wave Cooling,�?? Phys. Rev. Lett. 79, 2225-2228 (1997).
    [CrossRef]
  3. M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, �??Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap,�?? J. Mod. Opt. 47, 2755-2767 (2000).
  4. P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, �??Elementary Sisyphus process close to a dielectric surface,�??Phys. Rev. A 54, 4292-4198 (1996).
    [CrossRef] [PubMed]
  5. R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden den Heuvell, �??Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,�?? Phys. Rev. A 61, 053604-1-7 (2000).
    [CrossRef]
  6. M. Hammes, D. Rychtarik, H.-C. Nägel, and R. Grimm, �??Cold-atom gas at very high densities in an optical surface microtrap,�?? Phys. Rev. A 66, 051401-1-4 (2002).
    [CrossRef]
  7. M. Hammes, D. Rychtarik, B. Engeser, H.-C. Nägel, and R. Grimm, �??Evanescent-Wave Trapping and Evaporative Cooling of an Atomic Gas at the Crossover to Two Dimensions,�?? Phys. Rev. Lett. 90, 173001-1-4 (2003).
    [CrossRef] [PubMed]
  8. H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, �??Quasi-2D Gas of Laser Cooled Atoms in a Planar Matter Waveguide,�?? Phys. Rev. Lett. 81, 5298-5301 (1998).
    [CrossRef]
  9. P. Domokos and H. Ritsch, �??Efficient laoding and cooling in a dynamic optical evanescent-wave microtrap,�??Europhys. Lett. 54, 306-312 (2001).
    [CrossRef]
  10. M. Gorliki, S. Feron, V. Lorent, and M. Dukloy, �??Interferometric approaches to atom-surface van der Waals interactions in atomic mirrors,�?? Phys. Rev. A 61, 013603-1-9 (2000).
  11. C. Henkel, K. Mølmer, R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, �??Diffuse atomic reflection at a rough mirror,�?? Phys. Rev. A 55, 1160-1178 (1997).
    [CrossRef]
  12. V. Savalli, D. Stevens, J. Estève, P. D. Featonby, V. Josse, N. Westbrook, C. I. Westbrook, and A. Aspect, �??Specular Reflection of Matter Waves from a Rough Mirror,�?? Phys. Rev. Lett. 88, 250404-1-4 (1997).
  13. L. Khaykovich, N. Davidson, �??Adiabatic focusing of cold atoms in a blue-detuned laser standing wave,�?? Appl. Phys. B 70, 683-688 (2000).
    [CrossRef]
  14. S. Meneghini, V. I. Savichev, K. A. H. van Leeuwen, W. P. Schleich, �??Atomic focusing and near field imaging: A combination for producing small-period nanostructures,�?? Appl. Phys. B 70, 675-682 (2000).
    [CrossRef]
  15. A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, �??Rotation Sensing with an Atom Interferometer,�?? Phys. Rev. Lett 78, 760-763 (1997).
    [CrossRef]
  16. M. �?zcan, �??Influence of electric potentials on atom interferometers: Increased rotation sensitivity,�?? J. Appl. Phys. 83, 6185-6186 (1998).
    [CrossRef]
  17. A. Peters, K. Y. Chung, and S. Chu, �??Measurement of gravitational acceleration by dropping atoms,�?? Nature 400, 849-852 (1999).
    [CrossRef]
  18. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, �??Quantum gates with neutral atoms: Controlling colisional interactions in time-dependent traps,�?? Phys. Rev. A 61, 022304-1-11 (2000).
    [CrossRef]
  19. M. D. Lukin, M. Fleischhauer, and R. Cote, �??Dipole blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles,�?? Phys. Rev. Lett. 87, 037901-1-4 (2001).
    [CrossRef] [PubMed]
  20. M. V. Subbotin, V. I. Balykin, D. V. Laryushin, V. S. Letokhov, �??Laser controlled atom waveguide as a source of ultracold atoms,�?? Opt. Commun. 139, 107-116 (1997).
    [CrossRef]
  21. H. Nha and W. Jhe, �??Sisyphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997).
    [CrossRef]
  22. J. Yin, Y. Zhu, Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998).
    [CrossRef]
  23. I. Manek, Yu. B. Ovchinnikov and R. Grimm, �??Generation of a hollow laser beam for atom trapping using an axicon,�?? Opt. Commun. 147, 67-70 (1998).
    [CrossRef]
  24. D. J. Harris and C. M. Savage, �??Atomic gravitational cavities from hollow optical fibers,�?? Phys. Rev. A 51, 3967-3971 (1995).
    [CrossRef] [PubMed]

Appl. Phys. B (2)

L. Khaykovich, N. Davidson, �??Adiabatic focusing of cold atoms in a blue-detuned laser standing wave,�?? Appl. Phys. B 70, 683-688 (2000).
[CrossRef]

S. Meneghini, V. I. Savichev, K. A. H. van Leeuwen, W. P. Schleich, �??Atomic focusing and near field imaging: A combination for producing small-period nanostructures,�?? Appl. Phys. B 70, 675-682 (2000).
[CrossRef]

Europhys. Lett. (1)

P. Domokos and H. Ritsch, �??Efficient laoding and cooling in a dynamic optical evanescent-wave microtrap,�??Europhys. Lett. 54, 306-312 (2001).
[CrossRef]

J. Appl. Phys. (1)

M. �?zcan, �??Influence of electric potentials on atom interferometers: Increased rotation sensitivity,�?? J. Appl. Phys. 83, 6185-6186 (1998).
[CrossRef]

J. Mod. Opt. (1)

M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, �??Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap,�?? J. Mod. Opt. 47, 2755-2767 (2000).

Nature (1)

A. Peters, K. Y. Chung, and S. Chu, �??Measurement of gravitational acceleration by dropping atoms,�?? Nature 400, 849-852 (1999).
[CrossRef]

Opt. Commun. (3)

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995).
[CrossRef]

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, V. S. Letokhov, �??Laser controlled atom waveguide as a source of ultracold atoms,�?? Opt. Commun. 139, 107-116 (1997).
[CrossRef]

I. Manek, Yu. B. Ovchinnikov and R. Grimm, �??Generation of a hollow laser beam for atom trapping using an axicon,�?? Opt. Commun. 147, 67-70 (1998).
[CrossRef]

Phys. Lett. A (1)

J. Yin, Y. Zhu, Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

Phys. Rev. A (8)

D. J. Harris and C. M. Savage, �??Atomic gravitational cavities from hollow optical fibers,�?? Phys. Rev. A 51, 3967-3971 (1995).
[CrossRef] [PubMed]

H. Nha and W. Jhe, �??Sisyphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, �??Quantum gates with neutral atoms: Controlling colisional interactions in time-dependent traps,�?? Phys. Rev. A 61, 022304-1-11 (2000).
[CrossRef]

P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, �??Elementary Sisyphus process close to a dielectric surface,�??Phys. Rev. A 54, 4292-4198 (1996).
[CrossRef] [PubMed]

R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden den Heuvell, �??Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,�?? Phys. Rev. A 61, 053604-1-7 (2000).
[CrossRef]

M. Hammes, D. Rychtarik, H.-C. Nägel, and R. Grimm, �??Cold-atom gas at very high densities in an optical surface microtrap,�?? Phys. Rev. A 66, 051401-1-4 (2002).
[CrossRef]

M. Gorliki, S. Feron, V. Lorent, and M. Dukloy, �??Interferometric approaches to atom-surface van der Waals interactions in atomic mirrors,�?? Phys. Rev. A 61, 013603-1-9 (2000).

C. Henkel, K. Mølmer, R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, �??Diffuse atomic reflection at a rough mirror,�?? Phys. Rev. A 55, 1160-1178 (1997).
[CrossRef]

Phys. Rev. Lett (1)

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, �??Rotation Sensing with an Atom Interferometer,�?? Phys. Rev. Lett 78, 760-763 (1997).
[CrossRef]

Phys. Rev. Lett. (5)

Yu. B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface Trap for Cs atoms based on Evanescent-Wave Cooling,�?? Phys. Rev. Lett. 79, 2225-2228 (1997).
[CrossRef]

M. D. Lukin, M. Fleischhauer, and R. Cote, �??Dipole blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles,�?? Phys. Rev. Lett. 87, 037901-1-4 (2001).
[CrossRef] [PubMed]

V. Savalli, D. Stevens, J. Estève, P. D. Featonby, V. Josse, N. Westbrook, C. I. Westbrook, and A. Aspect, �??Specular Reflection of Matter Waves from a Rough Mirror,�?? Phys. Rev. Lett. 88, 250404-1-4 (1997).

M. Hammes, D. Rychtarik, B. Engeser, H.-C. Nägel, and R. Grimm, �??Evanescent-Wave Trapping and Evaporative Cooling of an Atomic Gas at the Crossover to Two Dimensions,�?? Phys. Rev. Lett. 90, 173001-1-4 (2003).
[CrossRef] [PubMed]

H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, �??Quasi-2D Gas of Laser Cooled Atoms in a Planar Matter Waveguide,�?? Phys. Rev. Lett. 81, 5298-5301 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A schematic view of a gravito-optical surface trap. Application of the repumping beam turns on the cooling process.

Fig. 2.
Fig. 2.

Dependence of a) equilibrium temperature eq and b) atomic density n 0 on the number of atoms N in a gravito-optical surface trap.

Fig. 3.
Fig. 3.

Phase-space density Ω versus number of atoms N in a gravito-optical surface trap, where a) no external force is applied and b) the applied force is f=10×m g.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

γ Sis 2 9 δ hfs δ + δ hfs 1 q e τ c ,
τ c = δ Γ Λ mg sin φ ,
γ geo 4 π sin φ 3 λ q r m k B T 1 q e τ c ,
γ heat = ( 2 + 1 q e q r ) ( 2 π ) 2 3 λ 2 m k B T 1 τ c .
γ heat = γ Sis + γ geo ,
R r = ( 1 η out 1 ) R in .
γ r = 1 q e q r ( 2 π ) 2 3 λ 2 m k B T 1 τ c 2 η in ( 1 η out 1 ) .
γ ˜ heat ( 2 + 1 q e q r η out ) ( 2 π ) 2 3 λ 2 m k B T 1 τ c .
T ˜ eq = B { 1 + C ( 2 q r 1 q e + 1 η out ) 1 } ,
B 3 ( δ + δ hfs ) π δ hfs q r λ m k B
C 2 q r δ hfs 3 ( δ + δ hfs ) .
P out = 2 u 0 u dz ( P rad 4 π 0 2 π 0 π 2 e αz cos θ sin θ d φ d θ )
= P rad ( 1 e α u 2 α u 1 2 [ α u Γ ( 0 , α u ) e α u ] ) ,
P out P rad η out 1 e α u α u ( 2 e α u ) .
η out 1 β N 1 e β N 2 e β N ,
a δ + δ hfs δ hfs 72 2 q r m k B D 2 ,

Metrics