Abstract

We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, �??The occurrence of sleep-disordered breathing among middle aged adults,�?? New. Eng. J. Med. 328, 1230-1235 (1992).
    [CrossRef]
  2. M. S. Badr, F. Toiber, J. B. Skatrud, and J. Dempsey, �??Pharyngeal narrowing/occlusion during central sleep apnea,�?? J. Appl. Physiology 78, 1806-1815 (1995).
  3. D. Naajas and R. Farre, �??Forced oscillation technique: from theory to clinical applications,�?? Monaldi Arch. Chest. Dis. 56, 555-562 (2001).
  4. O. Skatvedt, �??Continuous pressure measurements during sleep to localize obstructions in the upper airways in heavy snorers and patients with obstructive sleep apnea syndrome,�?? Eur. Arch. Otorhinolaryngol. 252, 11-14 (1995).
    [CrossRef] [PubMed]
  5. V. Hoffstein and J. J. Fredberg, �??The acoustic reflection technique for non-invasive assessment of upper airway area,�?? Eur. Respir. J. 4, 602-611 (1991).
    [PubMed]
  6. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, �??In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,�?? Opt. Express 1, 432-440 (1997), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-432">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-432</a>.
    [CrossRef] [PubMed]
  7. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, and M. E. Brezinski, �??High resolution in vivo intra-arterial imaging with optical coherence tomography,�?? Heart 82, 128-133 (1999).
    [PubMed]
  8. D. M. Baney and W. V. Sorin, �??Extended-range optical low-coherence reflectometry using a recirculating delay technique,�?? IEEE Photon. Technol. Lett. 5, 1109-1112 (1993).
    [CrossRef]
  9. L. Giniunas, R. Karkockas, and R. Danielius, �??Accurate remote distance sensing by use of low-coherence interferometry: an industrial application,�?? Appl. Opt. 37, 6729-6733 (1998).
    [CrossRef]
  10. N. Delachenal, R. Gianotti, R. Wälti, H. Limberger, and R. P. Salathé, �??Constant high-speed optical lowcoherence reflectometry over 0.12m scan range,�?? Electron. Lett. 33, 2059-2061 (1997).
    [CrossRef]
  11. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, �??400-Hz mechanical scanning optical delay line,�?? Opt. Lett. 18, 558-560 (1993).
    [CrossRef] [PubMed]
  12. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, �??High-speed phase- and group-delay scanning with a grating-based phase control delay line,�?? Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  13. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, and J. A. Izatt, �??In vivo video rate optical coherence tomography,�?? Opt. Express 3, 219-228 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  14. K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, �??Extended range, rapid scanning optical delay line for biomedical interferometric imaging,�?? Electron. Lett. 35, 1404-1406 (1999).
    [CrossRef]
  15. R. E. Wagner and W. J. Tomlinson, �??Coupling efficiency of optics in single-mode fiber components,�?? Appl. Opt. 21, 2671-2689 (1982).
    [CrossRef] [PubMed]
  16. A. M. Rollins and J. A. Izatt, �??Optimal interferometer designs for optical coherence tomography,�?? Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  17. C. E. Saxer, J. F. de Boer, B. Hyle Park, Y. Zhao, Z. Chen, and J. S. Nelson, �??High-speed fiber-based polarization-sensitive optical coherence tomography on in vivo human skin,�?? Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  18. K. Takada, �??Noise in optical low-coherence reflectometry,�?? IEEE J. Quantum Electron. 34, 1098-1108 (1998).
    [CrossRef]
  19. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, �??High-speed optical coherence domain reflectometry,�?? Opt. Lett. 17, 151-153 (1992)
    [CrossRef] [PubMed]
  20. C. von Birgelen, E. A. de Vrey, G. S. Mintz, A. Nicosia, N. Bruining, W. Li, C. J. Slager, J. R. Roelandt, P. W. Serruys, and P. J. de Feyter, "ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans," Circulation 96, 2944-2952 (1997).
    [CrossRef] [PubMed]
  21. O. Skatvedt, H. Aker, and O. B. Godtlibsen, �??Nocturnal polysomnography with and without continuous pharyngeal and esophageal pressure measurements,�?? Sleep 19, 485-489 (1996).
    [PubMed]

Appl. Opt. (2)

Circulation (1)

C. von Birgelen, E. A. de Vrey, G. S. Mintz, A. Nicosia, N. Bruining, W. Li, C. J. Slager, J. R. Roelandt, P. W. Serruys, and P. J. de Feyter, "ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans," Circulation 96, 2944-2952 (1997).
[CrossRef] [PubMed]

Electron. Lett. (2)

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, �??Extended range, rapid scanning optical delay line for biomedical interferometric imaging,�?? Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

N. Delachenal, R. Gianotti, R. Wälti, H. Limberger, and R. P. Salathé, �??Constant high-speed optical lowcoherence reflectometry over 0.12m scan range,�?? Electron. Lett. 33, 2059-2061 (1997).
[CrossRef]

Eur. Arch. Otorhinolaryngol. (1)

O. Skatvedt, �??Continuous pressure measurements during sleep to localize obstructions in the upper airways in heavy snorers and patients with obstructive sleep apnea syndrome,�?? Eur. Arch. Otorhinolaryngol. 252, 11-14 (1995).
[CrossRef] [PubMed]

Eur. Respir. J. (1)

V. Hoffstein and J. J. Fredberg, �??The acoustic reflection technique for non-invasive assessment of upper airway area,�?? Eur. Respir. J. 4, 602-611 (1991).
[PubMed]

Heart (1)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, and M. E. Brezinski, �??High resolution in vivo intra-arterial imaging with optical coherence tomography,�?? Heart 82, 128-133 (1999).
[PubMed]

IEEE J. Quantum Electron. (1)

K. Takada, �??Noise in optical low-coherence reflectometry,�?? IEEE J. Quantum Electron. 34, 1098-1108 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. M. Baney and W. V. Sorin, �??Extended-range optical low-coherence reflectometry using a recirculating delay technique,�?? IEEE Photon. Technol. Lett. 5, 1109-1112 (1993).
[CrossRef]

J. Appl. Physiology (1)

M. S. Badr, F. Toiber, J. B. Skatrud, and J. Dempsey, �??Pharyngeal narrowing/occlusion during central sleep apnea,�?? J. Appl. Physiology 78, 1806-1815 (1995).

Monaldi Arch. Chest. Dis. (1)

D. Naajas and R. Farre, �??Forced oscillation technique: from theory to clinical applications,�?? Monaldi Arch. Chest. Dis. 56, 555-562 (2001).

New. Eng. J. Med. (1)

T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, �??The occurrence of sleep-disordered breathing among middle aged adults,�?? New. Eng. J. Med. 328, 1230-1235 (1992).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Sleep (1)

O. Skatvedt, H. Aker, and O. B. Godtlibsen, �??Nocturnal polysomnography with and without continuous pharyngeal and esophageal pressure measurements,�?? Sleep 19, 485-489 (1996).
[PubMed]

Supplementary Material (3)

» Media 1: MPG (2472 KB)     
» Media 2: MPG (1713 KB)     
» Media 3: MPG (1798 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagrams of the off-axis and on-axis configurations of the FDODL. SMF, single-mode fiber; L1 collimating lens; L2, focusing lens; PBS, polarizing beamsplitter; QWP, quarterwave plate; GRA, grating; GAL, galvanometer mirror; M, mirror. For simplicity, dispersion of the beam by the grating is not shown.

Fig. 2.
Fig. 2.

The relative coupling efficiency of the FDODL versus delay for the configurations: (o) off-axis and off-pivot, (+) on-axis and off-pivot, and (Δ) both the off-axis and on-pivot, and on-axis and on-pivot. The heavy solid line is an experimentally measured response for the on-axis, on-pivot configuration.

Fig. 3.
Fig. 3.

Schematic diagram of the endoscopic long-range OCT system. BBS, broadband source; PM, phase modulator; PC, polarization controller; M, motor.

Fig. 4.
Fig. 4.

Six in vivo measurements taken of the airway (and esophagus) of a human volunteer, arranged by distance into the airway: (a) nasal cavity, (b) nasopharynx, (c) velopharynx, (d) oropharynx, (e) hypopharynx, (f) esophagus. Some anatomical features are noted: nasal septum (N), middle turbinate (MT), inferior turbinate (IT), posterior nasal spine (P), base of uvula (BU), base of tongue (BT), arytenoid cartilage (AC). The two circles at the center of the images are the reflections from the inner and outer surfaces of the catheter.

Fig. 5.
Fig. 5.

(a) Measured cross-section of the in vivo hypopharynx of a human volunteer. (b) CT scan of the volunteer’s airway at a location close to where the OCT scan was performed.

Fig. 6.
Fig. 6.

Three video recordings of in vivo pullback measurements in various sections of the upper airway. They are: (a) velopharynx to nasopharynx (2.41 MB), (b) nasopharynx to nasal cavity (1.67 MB), (c) nasal cavity (1.75 MB).

Metrics