Abstract

Vertical resonators with a top mirror constituted of 1D photonic crystal membrane on top of a Bragg stack are investigated in this paper. These structures allow the fabrication of compact vertical-cavity surface-emitting lasers, which can be designed, in addition, for in-plane emission. With this hybrid approach, fabrication problems related to both classical VCSEL and Photonic Crystal lasers may be significantly relaxed, given that a full Bragg stack is replaced by a single photonic crystal membrane and that the Photonic Crystal is not formed in the active gain layer.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�?? Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  4. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Holinger, E. Jalaguier, S. Pocas, and B. Aspar, �??InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 m,�?? Electron. Lett. 37, 764-765 (2001).
    [CrossRef]
  5. T. Baba, N. Fukaya, J. Yonekura, �??Observation of light propagation in photonic crystal optical waveguides with bends,�?? Electron. Lett. 35, 654-655 (1999).
    [CrossRef]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, �??Channel drop filters in photonic crystals,�?? Opt. Express 3, 4 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a>.
    [CrossRef] [PubMed]
  7. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, �??Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,�?? J. Light. Technol. (to be published).
  8. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, �??Resonant coupling of near-infrared radiation to photonic band structure waveguides,�?? J. Light. Technol. 17, 2050-2057 (1999).
    [CrossRef]
  9. J. M. Pottage, E. Silvestre, and P. St. J. Russell, �??Vertical-cavity surface emitting resonances in photonic crystals,�?? J. Opt. Soc. Am. A 18, 442-447 (2001).
    [CrossRef]
  10. S. Tibuleac and R. Magnusson, �??Diffractive narrow-band transmission filter based on guided-mode resonance effects in thin-film multilayers,�?? IEEE Photon. Technol. Lett. 9, 464-466 (1997).
    [CrossRef]
  11. W. Sooh, M. F. Yannick, O. Solgaard, and S. Fan, �??Displacement sensitive photonic crystal structures based on guided resonance in photonic crystal,�?? Appl. Phys. Lett. 82, 1999-2001 (2003).
    [CrossRef]
  12. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, �??Coupling of modes analysis of resonant channel add-drop filters,�?? IEEE J. Quan. Electron. 35, 1322-1331 (1999).
    [CrossRef]
  13. A. Yariv, Optical Electronics in Modern Communications (Oxford, New York, NY 1997).
  14. S. G. Johnson, and J. D. Joannopoulos, �??Bloch-iterative frequency domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef]

Appl. Phys. Lett.

W. Sooh, M. F. Yannick, O. Solgaard, and S. Fan, �??Displacement sensitive photonic crystal structures based on guided resonance in photonic crystal,�?? Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Electron. Lett.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Holinger, E. Jalaguier, S. Pocas, and B. Aspar, �??InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 m,�?? Electron. Lett. 37, 764-765 (2001).
[CrossRef]

T. Baba, N. Fukaya, J. Yonekura, �??Observation of light propagation in photonic crystal optical waveguides with bends,�?? Electron. Lett. 35, 654-655 (1999).
[CrossRef]

IEEE J. Quan. Electron.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, �??Coupling of modes analysis of resonant channel add-drop filters,�?? IEEE J. Quan. Electron. 35, 1322-1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Tibuleac and R. Magnusson, �??Diffractive narrow-band transmission filter based on guided-mode resonance effects in thin-film multilayers,�?? IEEE Photon. Technol. Lett. 9, 464-466 (1997).
[CrossRef]

J. Light. Technol.

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, �??Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,�?? J. Light. Technol. (to be published).

V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, �??Resonant coupling of near-infrared radiation to photonic band structure waveguides,�?? J. Light. Technol. 17, 2050-2057 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�?? Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other

A. Yariv, Optical Electronics in Modern Communications (Oxford, New York, NY 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic laser structure

Fig. 2.
Fig. 2.

Electric field distribution (based upon TMM) at resonance for no lateral losses. In case (a), h 2=3λp /4 and in (b), h 2=2.94λp /4.

Fig. 3.
Fig. 3.

Electric field in the active layer (based upon TMM) at resonance versus lateral escape time(a). Resonance lifetime as a function of lateral escape time (b).

Fig. 4.
Fig. 4.

Band diagram (a) and reflectivity spectrum (b) for the designed PCM. Electric field distribution, at resonance, for the laser structure (c).

Fig. 5.
Fig. 5.

Electric field spectrum at a point in the air gap (a). Electric field distribution at resonance for h 2=3λp /4(b).

Fig. 6.
Fig. 6.

Electric field spectrum at a point in the air gap (a). Electric field distribution at resonance for h 2=2.94λp /4.

Metrics