Abstract

We show here that a thin film of a nonlinear conjugated polymer: poly(p-phenylenevinylene) (PPV) is capable of efficiently generating the third harmonic of femtosecond pulses of light at the near infrared (including telecommunication bands) wavelengths, giving coherent, low divergence beams in the visible range. By using more than one fundamental beam overlapping in space and in time on the PPV film, autocorrelation signals are observed as well as higher order mixing signals due to χ(5) and higher-order nonlinear susceptibilities. These signals can be used for applications such as short laser pulse diagnostics and photonic signal processing and they provide information about the nonlinear properties of the material itself.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. F. Kajzar and J. Messier, "Third-harmonic generation in liquids," Phys. Rev. A 32, 2352-2363 (1985).
    [CrossRef] [PubMed]
  2. D. Yelin, D. Oron, E. Korkotian, M. Segal, Y. Silberberg, "Third-harmonic microscopy with a titaniumsapphire laser," Appl. Phys. B 74, s97-s101 (2002).
    [CrossRef]
  3. P. N. Prasad and D. J. Williams. Introduction to nonlinear optical effects in molecules and polymers (John Wiley, New York, 1991).
  4. M. G. Kuzyk and C. W. Dirk. Characterization techniques and tabulations for organic nonlinear optical materials (Marcel Dekker Inc, New York, Basel, Hong Kong, 1998).
  5. R. L. Sutherland. Handbook of nonlinear optics (ed. B. Thompson, J.) (Marcel Dekker, Inc., New York, 1996).
  6. B. Luther-Davies and M. Samoc, "Third-order nonlinear optical organic materials for photonic switching," Curr. Opin. Solid State Mater. Sci. 2, 213-219 (1997).
    [CrossRef]
  7. Swiatkiewicz, P. N. Prasad, F. E. Karasz, "Anisotropy in the complex refractive index and the third-order nonlinear optical susceptibility of a stretch-oriented film of poly(p-phenylene vinylene)," J. Appl. Phys. 74, 525-530 (1993) .
    [CrossRef]
  8. A. Samoc, M. Samoc, M. Woodruff, B. Luther-Davies, "Tuning the properties of poly(pphenylenevinylene) for use in all-optical switching," Opt. Lett. 20, 1241-1243 (1995).
    [CrossRef] [PubMed]
  9. A. Samoc, M. Samoc, M. Woodruff, B. Luther-Davies. in: Photonic polymer systems, fundamentals, methods and applications (eds. D. L. Wise, G. E. Wnek, D. J. Trantolo, T. M. Cooper, J. D. Gresser) pp. 373-436 (Marcel Dekker, Inc, New York, Basel, Hong Kong, 1998).
  10. T. Kaino, K. I. Kubodera, S. Tomaru, T. Kurihara, S. Saito, T. Tsutsui, S. Tokito, "Optical third-harmonic generation from poly(p-phenylenevinylene) thin films," Electr. Lett. 23, 1095-1097 (1987).
    [CrossRef]
  11. D. McBranch, M. Sinclair, A. J. Heeger, A. O. Patil, S. Shi, A. S., F. Wudl, "Linear and nonlinear optical studies of poly(p-phenylene vinylene) derivatives and polydiacetylene-4BCMU," Synth. Metals 29, E85- E90 (1989).
    [CrossRef]
  12. D. D. C. Bradley and Y. Mori, "Third harmonic generation in precursor route poly(p-phenylenevinylene )," Jpn. J. Appl. Phys. Part 1 28, 174-177 (1989) .
    [CrossRef]
  13. A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Muellen, C. Bubeck, "Third-harmonicgeneration spectroscopy of poly(p-phenylenevinylene): A comparison with oligomers and scaling laws for conjugated polymers," Phys. Rev. B 53, 4367-4376 (1996).
    [CrossRef]
  14. H. Schmitzer, H.-P. Wagner, W. Dultz, M. Kuhnelt, "Phase-matched third-harmonic generation in mercury- (I)-chloride," Appl. Opt. 41, 470-474 (2002).
    [CrossRef] [PubMed]
  15. T. Schneider, R. P. Schmid, J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B 72, 563-565 (2001).
    [CrossRef]
  16. D. Yelin, Y. Silberberg, Y. Barad, J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046-3049 (1999).
    [CrossRef]
  17. P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, A. Kraft, "Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly(2,5-dimethyl-pphenylene) vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene]," J. Chem. Soc. Perkin Trans. 1, 3225-3231 (1992).
    [CrossRef]
  18. D. R. Gagnon, J. D. Capistran, F. E. Karasz, R. W. Lenz, S. Antoun, "Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene)," Polymer 28, 567-573 (1987).
    [CrossRef]
  19. R. W. Lenz, C. C. Han, J. Stenger-Smith, F. E. Karasz, "Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers," J. Polym. Sci. A 26, 3241-3249 (1988).
    [CrossRef]
  20. G. S. He, J. D. Bhawalkar, P. N. Prasad, "Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound," Opt. Lett. 20, 1524-1526 (1995).
    [CrossRef] [PubMed]
  21. G. S. He, J. Dai, T.-C. Lin, P. P. Markowicz, P. N. Prasad, "Ultrashort 1.5-m laser excited upconverted stimulated emission based on simultaneous three-photon absorption," Opt. Lett. 28, 719-721 (2003).
    [CrossRef] [PubMed]
  22. B. E. A. Saleh and M. C. Teich. Fundamentals of photonics (John Wiley & Sons, New York, 1991).
    [CrossRef]
  23. D. J. Kane and R. Trebino, "Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating," Opt. Lett. 18, 823-825 (1993).
    [CrossRef] [PubMed]
  24. B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, K. W. Delong, "Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene)," Opt. Comm. 131, 301-306 (1996).
    [CrossRef]
  25. G. M. Carter, M. K. Thakur, Y. J. Chen, J. V. Hryniewicz, S. E. Meyler, "Measurements on the picosecond and femtosecond time scale of nonlinear optical and excited state processes in polydiacetylenes," Polym. Mater. Sci. Eng. 54, 436-438 (1986).
  26. H. Kogelnik "Coupled-wave theory for thick hologram gratings," The Bell System Technical Journal 48, 2909-2947 (1969).

Appl. Opt

H. Schmitzer, H.-P. Wagner, W. Dultz, M. Kuhnelt, "Phase-matched third-harmonic generation in mercury- (I)-chloride," Appl. Opt. 41, 470-474 (2002).
[CrossRef] [PubMed]

Appl. Phys.

T. Schneider, R. P. Schmid, J. Reif, "Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion," Appl. Phys. B 72, 563-565 (2001).
[CrossRef]

Appl. Phys. B

D. Yelin, D. Oron, E. Korkotian, M. Segal, Y. Silberberg, "Third-harmonic microscopy with a titaniumsapphire laser," Appl. Phys. B 74, s97-s101 (2002).
[CrossRef]

Curr. Opin. Solid State Mater. Sci.

B. Luther-Davies and M. Samoc, "Third-order nonlinear optical organic materials for photonic switching," Curr. Opin. Solid State Mater. Sci. 2, 213-219 (1997).
[CrossRef]

Electr. Lett.

T. Kaino, K. I. Kubodera, S. Tomaru, T. Kurihara, S. Saito, T. Tsutsui, S. Tokito, "Optical third-harmonic generation from poly(p-phenylenevinylene) thin films," Electr. Lett. 23, 1095-1097 (1987).
[CrossRef]

J. Appl. Phys.

Swiatkiewicz, P. N. Prasad, F. E. Karasz, "Anisotropy in the complex refractive index and the third-order nonlinear optical susceptibility of a stretch-oriented film of poly(p-phenylene vinylene)," J. Appl. Phys. 74, 525-530 (1993) .
[CrossRef]

J. Chem. Soc. Perkin Trans.

P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, A. Kraft, "Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly(2,5-dimethyl-pphenylene) vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene]," J. Chem. Soc. Perkin Trans. 1, 3225-3231 (1992).
[CrossRef]

J. Polym. Sci. A

R. W. Lenz, C. C. Han, J. Stenger-Smith, F. E. Karasz, "Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers," J. Polym. Sci. A 26, 3241-3249 (1988).
[CrossRef]

Jpn. J. Appl. Phys.

D. D. C. Bradley and Y. Mori, "Third harmonic generation in precursor route poly(p-phenylenevinylene )," Jpn. J. Appl. Phys. Part 1 28, 174-177 (1989) .
[CrossRef]

Metals

D. McBranch, M. Sinclair, A. J. Heeger, A. O. Patil, S. Shi, A. S., F. Wudl, "Linear and nonlinear optical studies of poly(p-phenylene vinylene) derivatives and polydiacetylene-4BCMU," Synth. Metals 29, E85- E90 (1989).
[CrossRef]

Opt. Comm.

B. Luther-Davies, M. Samoc, J. Swiatkiewicz, A. Samoc, M. Woodruff, R. Trebino, K. W. Delong, "Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene)," Opt. Comm. 131, 301-306 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Muellen, C. Bubeck, "Third-harmonicgeneration spectroscopy of poly(p-phenylenevinylene): A comparison with oligomers and scaling laws for conjugated polymers," Phys. Rev. B 53, 4367-4376 (1996).
[CrossRef]

Phys. Rev. Lett.

D. Yelin, Y. Silberberg, Y. Barad, J. S. Patel, "Phase-matched third-harmonic generation in a nematic liquid crystal cell," Phys. Rev. Lett. 82, 3046-3049 (1999).
[CrossRef]

Polym. Mater. Sci. Eng.

G. M. Carter, M. K. Thakur, Y. J. Chen, J. V. Hryniewicz, S. E. Meyler, "Measurements on the picosecond and femtosecond time scale of nonlinear optical and excited state processes in polydiacetylenes," Polym. Mater. Sci. Eng. 54, 436-438 (1986).

Polymer

D. R. Gagnon, J. D. Capistran, F. E. Karasz, R. W. Lenz, S. Antoun, "Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene)," Polymer 28, 567-573 (1987).
[CrossRef]

The Bell System Technical Journal

H. Kogelnik "Coupled-wave theory for thick hologram gratings," The Bell System Technical Journal 48, 2909-2947 (1969).

Third-harmonic generation in liquids

F. Kajzar and J. Messier, "Third-harmonic generation in liquids," Phys. Rev. A 32, 2352-2363 (1985).
[CrossRef] [PubMed]

Other

B. E. A. Saleh and M. C. Teich. Fundamentals of photonics (John Wiley & Sons, New York, 1991).
[CrossRef]

A. Samoc, M. Samoc, M. Woodruff, B. Luther-Davies. in: Photonic polymer systems, fundamentals, methods and applications (eds. D. L. Wise, G. E. Wnek, D. J. Trantolo, T. M. Cooper, J. D. Gresser) pp. 373-436 (Marcel Dekker, Inc, New York, Basel, Hong Kong, 1998).

P. N. Prasad and D. J. Williams. Introduction to nonlinear optical effects in molecules and polymers (John Wiley, New York, 1991).

M. G. Kuzyk and C. W. Dirk. Characterization techniques and tabulations for organic nonlinear optical materials (Marcel Dekker Inc, New York, Basel, Hong Kong, 1998).

R. L. Sutherland. Handbook of nonlinear optics (ed. B. Thompson, J.) (Marcel Dekker, Inc., New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Third-harmonic wave mixing in a 1 µm thick film of PPV (poly-p-phenylenevinylene) observed in a setting analogous to BOXCARS degenerate four-wave mixing (DFWM) geometry. The inset shows scheme of the experiment. The photograph (inverted colour) shows 500 nm spots for the three beams at 1500 nm. 1, 2, and 3 are third harmonic (500 nm) spots (3k 1, 3k 2 and 3k 3 interactions). Examples of THG mixing are spots 4 and 5 and 6 (2k 1+k2. 2k 2+k 1 and k 1+k 2+k 3 interactions) and spots 7 (4k 2-k 1) and 8 (4k 2-k 3) are examples of fifth-order mixing through the χ(5)(3ω;ω,ω,ω,-ω,ω) susceptibility.

Fig. 2.
Fig. 2.

Third-harmonic autocorrelation signal measured on a PPV film at 1500 nm.

Fig. 3.
Fig. 3.

Scheme of formation of third-harmonic mixing signals due to χ(3) and due to χ(5).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ω 3 ω 2 n 3 ω n ω 3 ε 0 2 c 4 χ ( 3 ) 2 I ω 2 L eff 2
l c = λ 6 ( n 3 ω n ω )
L eff = 2 1 exp ( α L 2 ) α L L .
Θ 0 = 2 π λ 2 w 0 .
P NL [ e i ω t k 1 r + e i ω t k 2 r + e i ω t k 3 r + c . c . ] 3
η = sin 2 ( π L λ Δ n )

Metrics