Abstract

Fabrication of multi-core structures in an optical multimode fiber was first demonstrated by the scanning of plasma self-channeling excited by a femtosecond (110 fs) laser (λp=790 nm)

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S-H. Cho, H. Kumagai, and K. Midorikawa, �??Fabrication of multi-core structure in optical fibers using plasma self-channeling excited by a femtosecond laser,�?? CLEO/Pacific Rim�??01, July, (2001), Chiba (TuB2-4)
  2. J. M. Senior, Optical Fiber Communications: Principles and Practices -2nd. (Prentice Hall, New York, 1992) pp. 160-206.
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-Mode Photonic Band Gap Guidance of Light in Air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  4. N. Bloembergen, �??The influence of electron plasma formation on superbroadening in light filaments,�?? Opt. Commun. 8, 285-288 (1973).
    [CrossRef]
  5. S-H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, �??Observation of self-channeled plasma formation and bulk modification in optical fibers using a high-intensity femtosecond laser,�?? Jpn. J. Appl. Phys. 37, L737-739 (1998).
    [CrossRef]
  6. R. Pini, R. Salimbeni, M. Vannini, Toci. �??Mechanism of high aspect ratio high quality drilling on optical substrates by high repetition rate laser�?? CLEO (Optical Society of America, Washington, D.C., 1994) pp. 385-385.
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-31 (1996).
    [CrossRef] [PubMed]
  8. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. -H. Her, J. P. Callan, and E. Mazur, �??Three-dimensional optical storage inside transparent materials,�?? Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  9. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, �??Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,�?? Appl. Phys. Lett. 72, 1442-1444 (1998).
    [CrossRef]
  10. D. Homoelle, W. Wielandy, A. L. Gaeta, E. F. Borrelli, and C. Smith, �??Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,�?? Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  11. C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  12. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, �??Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,�?? Opt. Express 10, 645-652 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645</a>.
    [CrossRef] [PubMed]
  13. M. Li, M. Ishizuka, X. Liu, Y. Sugimoto, N. Ikeda, K. Asakawa, �??Nanostructuring in submicron-level waveguides with femtosecond laser pulses,�?? Opt. Commun. 212, 159-163 (2002).
    [CrossRef]
  14. K. Miura, J. Qiu, H. Inoue, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  15. H. Kumagai, S-H. Cho, and K. Ishikawa, K. Midorikawa, M. Fujimoto, S. Aoshima, and Y. Tsuchiya �??Observation of the complex propagation of a femtosecond laser pulse in a dispersive transparent bulk materials,�?? J. Opt. Soc. Am. B, 20 597-602 (2003).
    [CrossRef]
  16. N. Bloembergen, �??Laser-induced electric breakdown in solids,�?? IEEE J. Quantum Electron. QE-10, 375-386 (1974).
    [CrossRef]
  17. O. M. Efimov, K. Gabel, S.V.Garnov, L. B. Glebov, S. Grantham, M. Richardson, and M. J. Soileau, �??Color-center generation in silicate glasses exposed to infrared femtosecond pulses,�?? J. Opt. Soc. Am. B. 15, 193-199 (1998).
    [CrossRef]
  18. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, �??Optical ablation by high-power short-pulse lasers,�?? J. Opt. Soc. Am, 13, 459-468 (1996).
    [CrossRef]
  19. T. Imahoko, M. Obara, �??Frequency chirp and pulse width control of internal modification of transparent material using tailored femtosecond laser pulse,�?? LEOS�??01, 1, 304-305 (2001).

Appl. Phys. Lett. (2)

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, �??Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,�?? Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

K. Miura, J. Qiu, H. Inoue, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Bloembergen, �??Laser-induced electric breakdown in solids,�?? IEEE J. Quantum Electron. QE-10, 375-386 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, �??Optical ablation by high-power short-pulse lasers,�?? J. Opt. Soc. Am, 13, 459-468 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

O. M. Efimov, K. Gabel, S.V.Garnov, L. B. Glebov, S. Grantham, M. Richardson, and M. J. Soileau, �??Color-center generation in silicate glasses exposed to infrared femtosecond pulses,�?? J. Opt. Soc. Am. B. 15, 193-199 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S-H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, �??Observation of self-channeled plasma formation and bulk modification in optical fibers using a high-intensity femtosecond laser,�?? Jpn. J. Appl. Phys. 37, L737-739 (1998).
[CrossRef]

Opt. Commun. (2)

N. Bloembergen, �??The influence of electron plasma formation on superbroadening in light filaments,�?? Opt. Commun. 8, 285-288 (1973).
[CrossRef]

M. Li, M. Ishizuka, X. Liu, Y. Sugimoto, N. Ikeda, K. Asakawa, �??Nanostructuring in submicron-level waveguides with femtosecond laser pulses,�?? Opt. Commun. 212, 159-163 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-Mode Photonic Band Gap Guidance of Light in Air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other (4)

S-H. Cho, H. Kumagai, and K. Midorikawa, �??Fabrication of multi-core structure in optical fibers using plasma self-channeling excited by a femtosecond laser,�?? CLEO/Pacific Rim�??01, July, (2001), Chiba (TuB2-4)

J. M. Senior, Optical Fiber Communications: Principles and Practices -2nd. (Prentice Hall, New York, 1992) pp. 160-206.

R. Pini, R. Salimbeni, M. Vannini, Toci. �??Mechanism of high aspect ratio high quality drilling on optical substrates by high repetition rate laser�?? CLEO (Optical Society of America, Washington, D.C., 1994) pp. 385-385.

T. Imahoko, M. Obara, �??Frequency chirp and pulse width control of internal modification of transparent material using tailored femtosecond laser pulse,�?? LEOS�??01, 1, 304-305 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup

Fig. 2.
Fig. 2.

Microscopic side views of plasma self-channeling (a) and photoinduced refractive index modification (b)×100, (c)×1000 magnified views. (d) Optical cracks (optical damage).

Fig. 3.
Fig. 3.

The profiles of laser-induced refractive index in an optical multimode fiber. Before irradiation (a) and after irradiation of the pulses of 1×104 shots at input intensity of 1.5×1012 W/cm2 (b).

Fig. 4.
Fig. 4.

ESR spectroscopic measurement of optical fibers (a) before laser irradiation (b) after laser irradiation in laser-induced modification.

Fig. 5.
Fig. 5.

The profiles of transmitted laser beam of 633 nm. (a) Profile transmitted from an optical multimode fiber with the modification. (b) Profile transmitted from a non-irradiation multimode fiber.

Fig. 6.
Fig. 6.

Fabricated multi-core structures in an optical fiber. (a) Two-core (b) Four-core structure

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n pl = 2 n 0 e 2 τ m ω ( ( 1 ω 2 τ 3 ) + i ( ω 2 τ 2 + ω τ ) ω 4 τ 4 + 1 ) N 0 exp { 0 t η ( E ) dt } ,

Metrics