Abstract

This paper presents experimental results showing the effect various natural convection heating regimes have on the diameter of drawn polymer optical fiber. The airflow, adjacent to the polymer, can be either laminar, oscillatory, or chaotic, depending on the imposed thermal boundary conditions at the furnace and iris walls. When subject to oscillatory and chaotic natural convection, the drawn fiber varies in diameter 2.5 to 10 times more than that measured under laminar heating conditions. Particle image velocimetry shows that unsteady natural convection occurs with the interplay between two asymmetric counter-rotating convective cells. This represents a significant instability mechanism, one that has not been previously identified.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
An Optical Technique for Measurement of Gas Flow Profiles Utilizing a Ring Laser

Paul Fenster and Walter K. Kahn
Appl. Opt. 7(12) 2383-2391 (1968)

Thermovision applied to Benard-Marangoni convection

P. Cerisier, J. Pantaloni, G. Finiels, and R. Amalric
Appl. Opt. 21(12) 2153-2159 (1982)

Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces

George Zikratov, Fang-Yu Yueh, Jagdish P. Singh, O. Perry Norton, R. Arun Kumar, and Robert L. Cook
Appl. Opt. 38(9) 1467-1475 (1999)

References

  • View by:
  • |
  • |
  • |

  1. H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of polymer optical fiber drawing force and heat transfer.” in Proceedings of 2003 ASME Summer Heat Transfer Conference, HT2003-47445 (to be published).
  2. H.F. Wolf, Handbook of fiber optics, (Garland STPM Press, 1979) Chap. 2.
  3. D.H. Smithgall, “Application of optimization theory to the control of the optical fiber drawing process,” AT&T Tech. J. 58, 1425–1435 (1979).
  4. U.C. Paek and R.B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
    [Crossref]
  5. S. Roy Choudhury, Y. Jaluria, and S.H.-K. Lee, “A computational method for generating the free surface neck-down profile for glass flow in optical fiber drawing,” Numer. Heat Tr. A-Appl. 35, 1–24 (1999).
    [Crossref]
  6. F.T. Geyling, “Basic fluid-dynamic considerations in the drawing of optical fibers,” AT&T Tech. J. 55, 1011–1056 (1976).
  7. F.T. Geyling and G.M. Homsey, “Extensional instabilities of the glass fiber drawing process,” Glass Technol. 21, 95–102 (1980).
  8. V.N. Vasiljev and V.D. Naumchic, “Analysis of the hydrodynamic stability of the glass fibre drawing process,” Glass Technol. 31, 240–244 (1990).
  9. J. Cao, “Studies on the mechanism of draw resonance in melt spinning,” J. App. Polym. Sci. 42, 143–151 (1991).
    [Crossref]
  10. S. Kase and T. Matsuo, “studies on melt spinning. II: Steady-state and transient solutions of fundamental equations compared with experimental results,” J. App. Polym. Sci. 11, 251–287 (1967).
    [Crossref]
  11. D.G. Young and M.M. Denn, “Disturbance propagation in melt spinning,” Chem. Eng. Sci. 44, 1807–1818 (1989).
    [Crossref]
  12. V.N. Vasil’ev, G.N. Dul’nev, and V.D. Naumchik, “Investigation of nonstationary conditions of optical fiber formation. III. Drawing process reaction under thermal actions and perturbations of the blank radius,” J. Eng. Phys. 58, 370–375 (1990).
    [Crossref]
  13. M.G. Forest and H. Zhou, “Unsteady analyses of thermal glass fiber drawing processes,” Eur. J. Appl. Math. 12, 479–496 (2001).
    [Crossref]
  14. H. Papamichael, C. Pellon, and I.N. Miaoulis, “Air flow patterns in the optical fibre drawing furnace,” Glass Technol. 38, 22–29 (1997).
  15. I.G. Choi and S.A. Korpela, “Stability of the conduction regime of natural convection in a tall vertical annulus,” J. Fluid Mech. 99, 725–738 (1980).
    [Crossref]
  16. P. Le Quéré and J. Pécheux, 1989, “Numerical simulations of multiple flow transitions in axisymmetric annulus convection,” J. Fluid Mech. 206, 517–544 (1989).
    [Crossref]
  17. J. Pécheux, P. Le Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air-filled annulus,” Phys. Fluids 6, 3247–3255 (1994).
    [Crossref]
  18. G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
    [Crossref]
  19. H.M. Reeve, A.M. Mescher, and A.F. Emery, “Experimental and numerical investigation of polymer preform heating,” J. Mater. Process. Manu. 9, 285–301 (2001).
    [Crossref]
  20. A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Tech. 8, 1406–1416 (1997).
    [Crossref]
  21. H.M. Reeve, A.M. Mescher, and A.F. Emery, “Unsteady natural convection of air in a tall axi-symmetric non-isothermal annulus,” Numer. Heat Tr. A-Appl. (submitted for publication).

2001 (2)

M.G. Forest and H. Zhou, “Unsteady analyses of thermal glass fiber drawing processes,” Eur. J. Appl. Math. 12, 479–496 (2001).
[Crossref]

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Experimental and numerical investigation of polymer preform heating,” J. Mater. Process. Manu. 9, 285–301 (2001).
[Crossref]

1999 (1)

S. Roy Choudhury, Y. Jaluria, and S.H.-K. Lee, “A computational method for generating the free surface neck-down profile for glass flow in optical fiber drawing,” Numer. Heat Tr. A-Appl. 35, 1–24 (1999).
[Crossref]

1997 (2)

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Tech. 8, 1406–1416 (1997).
[Crossref]

H. Papamichael, C. Pellon, and I.N. Miaoulis, “Air flow patterns in the optical fibre drawing furnace,” Glass Technol. 38, 22–29 (1997).

1994 (1)

J. Pécheux, P. Le Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air-filled annulus,” Phys. Fluids 6, 3247–3255 (1994).
[Crossref]

1991 (1)

J. Cao, “Studies on the mechanism of draw resonance in melt spinning,” J. App. Polym. Sci. 42, 143–151 (1991).
[Crossref]

1990 (2)

V.N. Vasiljev and V.D. Naumchic, “Analysis of the hydrodynamic stability of the glass fibre drawing process,” Glass Technol. 31, 240–244 (1990).

V.N. Vasil’ev, G.N. Dul’nev, and V.D. Naumchik, “Investigation of nonstationary conditions of optical fiber formation. III. Drawing process reaction under thermal actions and perturbations of the blank radius,” J. Eng. Phys. 58, 370–375 (1990).
[Crossref]

1989 (2)

D.G. Young and M.M. Denn, “Disturbance propagation in melt spinning,” Chem. Eng. Sci. 44, 1807–1818 (1989).
[Crossref]

P. Le Quéré and J. Pécheux, 1989, “Numerical simulations of multiple flow transitions in axisymmetric annulus convection,” J. Fluid Mech. 206, 517–544 (1989).
[Crossref]

1984 (1)

G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
[Crossref]

1980 (2)

I.G. Choi and S.A. Korpela, “Stability of the conduction regime of natural convection in a tall vertical annulus,” J. Fluid Mech. 99, 725–738 (1980).
[Crossref]

F.T. Geyling and G.M. Homsey, “Extensional instabilities of the glass fiber drawing process,” Glass Technol. 21, 95–102 (1980).

1979 (1)

D.H. Smithgall, “Application of optimization theory to the control of the optical fiber drawing process,” AT&T Tech. J. 58, 1425–1435 (1979).

1978 (1)

U.C. Paek and R.B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
[Crossref]

1976 (1)

F.T. Geyling, “Basic fluid-dynamic considerations in the drawing of optical fibers,” AT&T Tech. J. 55, 1011–1056 (1976).

1967 (1)

S. Kase and T. Matsuo, “studies on melt spinning. II: Steady-state and transient solutions of fundamental equations compared with experimental results,” J. App. Polym. Sci. 11, 251–287 (1967).
[Crossref]

Abcha, F.

J. Pécheux, P. Le Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air-filled annulus,” Phys. Fluids 6, 3247–3255 (1994).
[Crossref]

Boisvert, R.F.

G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
[Crossref]

Cao, J.

J. Cao, “Studies on the mechanism of draw resonance in melt spinning,” J. App. Polym. Sci. 42, 143–151 (1991).
[Crossref]

Choi, I.G.

I.G. Choi and S.A. Korpela, “Stability of the conduction regime of natural convection in a tall vertical annulus,” J. Fluid Mech. 99, 725–738 (1980).
[Crossref]

Choudhury, S. Roy

S. Roy Choudhury, Y. Jaluria, and S.H.-K. Lee, “A computational method for generating the free surface neck-down profile for glass flow in optical fiber drawing,” Numer. Heat Tr. A-Appl. 35, 1–24 (1999).
[Crossref]

Croiell, S.R.

G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
[Crossref]

Denn, M.M.

D.G. Young and M.M. Denn, “Disturbance propagation in melt spinning,” Chem. Eng. Sci. 44, 1807–1818 (1989).
[Crossref]

Dul’nev, G.N.

V.N. Vasil’ev, G.N. Dul’nev, and V.D. Naumchik, “Investigation of nonstationary conditions of optical fiber formation. III. Drawing process reaction under thermal actions and perturbations of the blank radius,” J. Eng. Phys. 58, 370–375 (1990).
[Crossref]

Emery, A.F.

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Experimental and numerical investigation of polymer preform heating,” J. Mater. Process. Manu. 9, 285–301 (2001).
[Crossref]

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Unsteady natural convection of air in a tall axi-symmetric non-isothermal annulus,” Numer. Heat Tr. A-Appl. (submitted for publication).

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of polymer optical fiber drawing force and heat transfer.” in Proceedings of 2003 ASME Summer Heat Transfer Conference, HT2003-47445 (to be published).

Forest, M.G.

M.G. Forest and H. Zhou, “Unsteady analyses of thermal glass fiber drawing processes,” Eur. J. Appl. Math. 12, 479–496 (2001).
[Crossref]

Geyling, F.T.

F.T. Geyling and G.M. Homsey, “Extensional instabilities of the glass fiber drawing process,” Glass Technol. 21, 95–102 (1980).

F.T. Geyling, “Basic fluid-dynamic considerations in the drawing of optical fibers,” AT&T Tech. J. 55, 1011–1056 (1976).

Glicksman, M.E.

G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
[Crossref]

Homsey, G.M.

F.T. Geyling and G.M. Homsey, “Extensional instabilities of the glass fiber drawing process,” Glass Technol. 21, 95–102 (1980).

Jaluria, Y.

S. Roy Choudhury, Y. Jaluria, and S.H.-K. Lee, “A computational method for generating the free surface neck-down profile for glass flow in optical fiber drawing,” Numer. Heat Tr. A-Appl. 35, 1–24 (1999).
[Crossref]

Kase, S.

S. Kase and T. Matsuo, “studies on melt spinning. II: Steady-state and transient solutions of fundamental equations compared with experimental results,” J. App. Polym. Sci. 11, 251–287 (1967).
[Crossref]

Korpela, S.A.

I.G. Choi and S.A. Korpela, “Stability of the conduction regime of natural convection in a tall vertical annulus,” J. Fluid Mech. 99, 725–738 (1980).
[Crossref]

Lee, S.H.-K.

S. Roy Choudhury, Y. Jaluria, and S.H.-K. Lee, “A computational method for generating the free surface neck-down profile for glass flow in optical fiber drawing,” Numer. Heat Tr. A-Appl. 35, 1–24 (1999).
[Crossref]

Matsuo, T.

S. Kase and T. Matsuo, “studies on melt spinning. II: Steady-state and transient solutions of fundamental equations compared with experimental results,” J. App. Polym. Sci. 11, 251–287 (1967).
[Crossref]

McFadden, G.B.

G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
[Crossref]

Melling, A.

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Tech. 8, 1406–1416 (1997).
[Crossref]

Mescher, A.M.

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Experimental and numerical investigation of polymer preform heating,” J. Mater. Process. Manu. 9, 285–301 (2001).
[Crossref]

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Unsteady natural convection of air in a tall axi-symmetric non-isothermal annulus,” Numer. Heat Tr. A-Appl. (submitted for publication).

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of polymer optical fiber drawing force and heat transfer.” in Proceedings of 2003 ASME Summer Heat Transfer Conference, HT2003-47445 (to be published).

Miaoulis, I.N.

H. Papamichael, C. Pellon, and I.N. Miaoulis, “Air flow patterns in the optical fibre drawing furnace,” Glass Technol. 38, 22–29 (1997).

Naumchic, V.D.

V.N. Vasiljev and V.D. Naumchic, “Analysis of the hydrodynamic stability of the glass fibre drawing process,” Glass Technol. 31, 240–244 (1990).

Naumchik, V.D.

V.N. Vasil’ev, G.N. Dul’nev, and V.D. Naumchik, “Investigation of nonstationary conditions of optical fiber formation. III. Drawing process reaction under thermal actions and perturbations of the blank radius,” J. Eng. Phys. 58, 370–375 (1990).
[Crossref]

Paek, U.C.

U.C. Paek and R.B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
[Crossref]

Papamichael, H.

H. Papamichael, C. Pellon, and I.N. Miaoulis, “Air flow patterns in the optical fibre drawing furnace,” Glass Technol. 38, 22–29 (1997).

Pécheux, J.

J. Pécheux, P. Le Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air-filled annulus,” Phys. Fluids 6, 3247–3255 (1994).
[Crossref]

P. Le Quéré and J. Pécheux, 1989, “Numerical simulations of multiple flow transitions in axisymmetric annulus convection,” J. Fluid Mech. 206, 517–544 (1989).
[Crossref]

Pellon, C.

H. Papamichael, C. Pellon, and I.N. Miaoulis, “Air flow patterns in the optical fibre drawing furnace,” Glass Technol. 38, 22–29 (1997).

Quéré, P. Le

J. Pécheux, P. Le Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air-filled annulus,” Phys. Fluids 6, 3247–3255 (1994).
[Crossref]

P. Le Quéré and J. Pécheux, 1989, “Numerical simulations of multiple flow transitions in axisymmetric annulus convection,” J. Fluid Mech. 206, 517–544 (1989).
[Crossref]

Reeve, H.M.

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Experimental and numerical investigation of polymer preform heating,” J. Mater. Process. Manu. 9, 285–301 (2001).
[Crossref]

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Unsteady natural convection of air in a tall axi-symmetric non-isothermal annulus,” Numer. Heat Tr. A-Appl. (submitted for publication).

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of polymer optical fiber drawing force and heat transfer.” in Proceedings of 2003 ASME Summer Heat Transfer Conference, HT2003-47445 (to be published).

Runk, R.B.

U.C. Paek and R.B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
[Crossref]

Smithgall, D.H.

D.H. Smithgall, “Application of optimization theory to the control of the optical fiber drawing process,” AT&T Tech. J. 58, 1425–1435 (1979).

Vasil’ev, V.N.

V.N. Vasil’ev, G.N. Dul’nev, and V.D. Naumchik, “Investigation of nonstationary conditions of optical fiber formation. III. Drawing process reaction under thermal actions and perturbations of the blank radius,” J. Eng. Phys. 58, 370–375 (1990).
[Crossref]

Vasiljev, V.N.

V.N. Vasiljev and V.D. Naumchic, “Analysis of the hydrodynamic stability of the glass fibre drawing process,” Glass Technol. 31, 240–244 (1990).

Wolf, H.F.

H.F. Wolf, Handbook of fiber optics, (Garland STPM Press, 1979) Chap. 2.

Young, D.G.

D.G. Young and M.M. Denn, “Disturbance propagation in melt spinning,” Chem. Eng. Sci. 44, 1807–1818 (1989).
[Crossref]

Zhou, H.

M.G. Forest and H. Zhou, “Unsteady analyses of thermal glass fiber drawing processes,” Eur. J. Appl. Math. 12, 479–496 (2001).
[Crossref]

AT&T Tech. J. (2)

D.H. Smithgall, “Application of optimization theory to the control of the optical fiber drawing process,” AT&T Tech. J. 58, 1425–1435 (1979).

F.T. Geyling, “Basic fluid-dynamic considerations in the drawing of optical fibers,” AT&T Tech. J. 55, 1011–1056 (1976).

Chem. Eng. Sci. (1)

D.G. Young and M.M. Denn, “Disturbance propagation in melt spinning,” Chem. Eng. Sci. 44, 1807–1818 (1989).
[Crossref]

Eur. J. Appl. Math. (1)

M.G. Forest and H. Zhou, “Unsteady analyses of thermal glass fiber drawing processes,” Eur. J. Appl. Math. 12, 479–496 (2001).
[Crossref]

Glass Technol. (3)

H. Papamichael, C. Pellon, and I.N. Miaoulis, “Air flow patterns in the optical fibre drawing furnace,” Glass Technol. 38, 22–29 (1997).

F.T. Geyling and G.M. Homsey, “Extensional instabilities of the glass fiber drawing process,” Glass Technol. 21, 95–102 (1980).

V.N. Vasiljev and V.D. Naumchic, “Analysis of the hydrodynamic stability of the glass fibre drawing process,” Glass Technol. 31, 240–244 (1990).

J. App. Polym. Sci. (2)

J. Cao, “Studies on the mechanism of draw resonance in melt spinning,” J. App. Polym. Sci. 42, 143–151 (1991).
[Crossref]

S. Kase and T. Matsuo, “studies on melt spinning. II: Steady-state and transient solutions of fundamental equations compared with experimental results,” J. App. Polym. Sci. 11, 251–287 (1967).
[Crossref]

J. Appl. Phys. (1)

U.C. Paek and R.B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
[Crossref]

J. Eng. Phys. (1)

V.N. Vasil’ev, G.N. Dul’nev, and V.D. Naumchik, “Investigation of nonstationary conditions of optical fiber formation. III. Drawing process reaction under thermal actions and perturbations of the blank radius,” J. Eng. Phys. 58, 370–375 (1990).
[Crossref]

J. Fluid Mech. (2)

I.G. Choi and S.A. Korpela, “Stability of the conduction regime of natural convection in a tall vertical annulus,” J. Fluid Mech. 99, 725–738 (1980).
[Crossref]

P. Le Quéré and J. Pécheux, 1989, “Numerical simulations of multiple flow transitions in axisymmetric annulus convection,” J. Fluid Mech. 206, 517–544 (1989).
[Crossref]

J. Mater. Process. Manu. (1)

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Experimental and numerical investigation of polymer preform heating,” J. Mater. Process. Manu. 9, 285–301 (2001).
[Crossref]

Meas. Sci. Tech. (1)

A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Tech. 8, 1406–1416 (1997).
[Crossref]

Numer. Heat Tr. A-Appl. (1)

S. Roy Choudhury, Y. Jaluria, and S.H.-K. Lee, “A computational method for generating the free surface neck-down profile for glass flow in optical fiber drawing,” Numer. Heat Tr. A-Appl. 35, 1–24 (1999).
[Crossref]

Phys. Fluids (2)

J. Pécheux, P. Le Quéré, and F. Abcha, “Curvature effects on axisymmetric instability of conduction regime in a tall air-filled annulus,” Phys. Fluids 6, 3247–3255 (1994).
[Crossref]

G.B. McFadden, S.R. Croiell, R.F. Boisvert, and M.E. Glicksman, “Asymmetric instabilities in buoyancy-driven flow in a tall vertical annulus,” Phys. Fluids 27, 1359–1361 (1984).
[Crossref]

Other (3)

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Unsteady natural convection of air in a tall axi-symmetric non-isothermal annulus,” Numer. Heat Tr. A-Appl. (submitted for publication).

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of polymer optical fiber drawing force and heat transfer.” in Proceedings of 2003 ASME Summer Heat Transfer Conference, HT2003-47445 (to be published).

H.F. Wolf, Handbook of fiber optics, (Garland STPM Press, 1979) Chap. 2.

Supplementary Material (2)

» Media 1: AVI (1205 KB)     
» Media 2: AVI (4498 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The polymer optical fiber draw furnace. Thermocouple locations are marked with ‘x’.

Fig. 2.
Fig. 2.

Axial variation of: (a) the polymer neck-down profile, η(z)=Rp/Rw, (including the radial and axial location of the thermocouples in air) and (b) the wall temperature profile, Tw(z).

Fig. 3.
Fig. 3.

The model furnace. The inset of frame ‘A’ shows a sample raw PIV image in which the ‘necking’ polymer preform and olive oil particles can be seen.

Fig. 4.
Fig. 4.

Excursion of the air temperature and fiber diameter histories from the sample mean, illustrating: (a,b) laminar, (c,d) oscillatory, and (e,f) chaotic natural convection conditions. Note different scales on the y-axes.

Fig. 5.
Fig. 5.

Frequency spectrums of: (a) the air temperature and (b) the fiber diameter observations for the oscillatory (Tt=114.5°C) and chaotic (Tt=104.8°C) flow regimes.

Fig. 6.
Fig. 6.

Air temperature and fiber diameter histories recorded at: (a, b) Tt=108°C and (c, d) Tt=106°C, illustrating the occurrence of period doubling and its effect on the fiber diameter.

Fig. 7.
Fig. 7.

PIV vector plot of time-invariant, axi-symmetric, laminar flow in the furnace model.

Fig. 8.
Fig. 8.

Time history of the axial velocity measured at x=-0.018 m and z=0.096 m showing unsteady natural convection. A movie of one complete oscillation is shown in Fig. 9.

Fig. 9.
Fig. 9.

(1.21 MB) Movie showing the asymmetric oscillating flow field within the model furnace (4.50 MB version). (Location x=-0.018 m, z=0.096 m is marked with a white cross.)

Metrics