Abstract

We report the first use of a double-layer liquid crystal modulator array for spectral phase pulse shaping that operates independent of polarization. Such insensitivity to polarization is crucial for fiber applications, e.g., dispersion compensation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.M. Weiner, "Femtosecond Pulse Shaping Using Spatial Light Modulators," Rev. Sci. Instr. 71, 1929-1960 (2000).
    [CrossRef]
  2. R.J. Levis, G.M. Menkir, and H. Rabitz, "Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses," Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  3. C.-C. Chang, H.P. Sardesai, and A.M. Weiner, "Dispersion-Free Fiber Transmission for Femtosecond Pulses Using a Dispersion-Compensating Fiber and a Programmable Pulse Shaper," Opt. Lett. 23, 283-285 (1998).
    [CrossRef]
  4. S. Shen and A.M. Weiner, "Complete Dispersion Compensation for 400-Fs Pulse Transmission over 10- Km Fiber Link Using Dispersion Compensating Fiber and Spectral Phase Equalizer," IEEE Phot. Tech. Lett. 11, 827-829 (1999).
    [CrossRef]
  5. M. Shirasaki and S. Cao, �??Compensation of Chromatic Dispersion and Dispersion Slope using a Virtually Imaged Phased Array,�?? presented at the Optical Fiber Communications Conference, Anaheim, CA, 17-22 Mar. 2001.
  6. T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, �??Novel Multi-Channel Tunable Chromatic Dispersion Compensator Based on MEMS & Diffraction Grating,�?? presented at the Optical Fiber Communications Conference, Atlanta, GA, 23-28 Mar. 2003.
  7. T. Brixner, M. Strehle, and G. Gerber, "Feedback-Controlled Optimization of Amplified Femtosecond Laser Pulses," Appl. Phys. B 68, 281-284 (1999).
    [CrossRef]
  8. E. Zeek, R. Bartels, M. Murnane, H. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000).
    [CrossRef]
  9. A.M. Weiner, D.E. Leaird, J.S. Patel, and J.R. Wullert, "Programmable Shaping of Femtosecond Pulses by Use of a 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  10. M.M. Wefers and K.A. Nelson, "Generation of High-Fidelity Programmable Ultrafast Optical Waveforms," Opt. Lett. 20, 1047-1049 (1995).
    [CrossRef] [PubMed]
  11. J.X. Tull, M.A. Dugan, and W.S. Warren, "High Resolution, Ultrafast Laser Pulse Shaping and Its Applications," Adv. Magn. Opt. Reson. 20, 1 (1997).
    [CrossRef]
  12. T. Brixner and G. Gerber, "Femtosecond Polarization Pulse Shaping," Opt. Lett. 26, 557-559 (2001).
    [CrossRef]
  13. K. Tamura, H. A. Haus and E. P. Ippen, �??Self-Starting Additive Pulse Mode-Locked Erbium Fibre Ring Laser,�?? Electron. Lett. 28, 2226-2228 (1992).
    [CrossRef]
  14. H. Takenouchi, T. Goh, and T. Ishii, "8 Thz Bandwidth Dispersion-Slope Compensator Module for Multiband 40 Gbit/s WDM Transmission Systems Using an AWGs and Spatial Phase Filter," Electron Lett. 37, 777-778 (2001).

Adv. Magn. Opt. Reson (1)

J.X. Tull, M.A. Dugan, and W.S. Warren, "High Resolution, Ultrafast Laser Pulse Shaping and Its Applications," Adv. Magn. Opt. Reson. 20, 1 (1997).
[CrossRef]

Appl. Phys. B (1)

T. Brixner, M. Strehle, and G. Gerber, "Feedback-Controlled Optimization of Amplified Femtosecond Laser Pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

Electron Lett. 37 (1)

H. Takenouchi, T. Goh, and T. Ishii, "8 Thz Bandwidth Dispersion-Slope Compensator Module for Multiband 40 Gbit/s WDM Transmission Systems Using an AWGs and Spatial Phase Filter," Electron Lett. 37, 777-778 (2001).

Electron. Lett. (1)

K. Tamura, H. A. Haus and E. P. Ippen, �??Self-Starting Additive Pulse Mode-Locked Erbium Fibre Ring Laser,�?? Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

IEEE J. Quantum Electron (1)

A.M. Weiner, D.E. Leaird, J.S. Patel, and J.R. Wullert, "Programmable Shaping of Femtosecond Pulses by Use of a 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

IEEE Phot. Tech. Lett. (1)

S. Shen and A.M. Weiner, "Complete Dispersion Compensation for 400-Fs Pulse Transmission over 10- Km Fiber Link Using Dispersion Compensating Fiber and Spectral Phase Equalizer," IEEE Phot. Tech. Lett. 11, 827-829 (1999).
[CrossRef]

Opt. Lett (1)

M.M. Wefers and K.A. Nelson, "Generation of High-Fidelity Programmable Ultrafast Optical Waveforms," Opt. Lett. 20, 1047-1049 (1995).
[CrossRef] [PubMed]

Opt. Lett. (3)

Rev. Sci. Instr. (1)

A.M. Weiner, "Femtosecond Pulse Shaping Using Spatial Light Modulators," Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

Science (1)

R.J. Levis, G.M. Menkir, and H. Rabitz, "Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Other (2)

M. Shirasaki and S. Cao, �??Compensation of Chromatic Dispersion and Dispersion Slope using a Virtually Imaged Phased Array,�?? presented at the Optical Fiber Communications Conference, Anaheim, CA, 17-22 Mar. 2001.

T. Sano, T. Iwashima, M. Katayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, �??Novel Multi-Channel Tunable Chromatic Dispersion Compensator Based on MEMS & Diffraction Grating,�?? presented at the Optical Fiber Communications Conference, Atlanta, GA, 23-28 Mar. 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Complete setup.

Fig. 2.
Fig. 2.

Photograph of reflective pulse shaper.

Fig. 3.
Fig. 3.

(a) Uncompensated pulse, note ringing tail. (b) LCM single-pass cubic phase mask.

Fig. 4.
Fig. 4.

(a–f) Cross-correlations for the compensated pulse corresponding to the input polarizations given in Table 1. Pulse width is as shown.

Fig. 5.
Fig. 5.

Doublet phase mask. Spectral slope of ±0.1π/pixel for opposite halves of the spectrum.

Fig. 6.
Fig. 6.

(a–f) Cross-correlations for a pulse doublet shape corresponding to the input polarizations given in Table 1. Spacing between pulse peaks is as shown.

Tables (1)

Tables Icon

Table 1. Six input polarization states

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J LCM = [ exp ( j ψ 2 S ) 0 0 exp ( j ψ 2 L ( V 2 ) ) ] [ exp ( j ψ 1 L ( V 1 ) ) 0 0 exp ( j ψ 1 S ) ]
J LCM = exp ( j ψ 1 L ( V 1 ) + ψ 2 L ( V 2 ) 2 ) exp ( j ψ 1 S + ψ 2 S 2 )
× [ exp ( j Δ 2 ( V 2 ) Δ 1 ( V 1 ) 2 ) 0 0 exp ( j Δ 1 ( V 1 ) Δ 2 ( V 2 ) 2 ) ]
exp ( j ψ 1 L ( V 1 ) + ψ 2 L ( V 2 ) 2 ) exp ( j ψ 1 S + ψ 2 S 2 ) [ 1 0 0 1 ]
PDL dB = 10 log ( P Max P Min )

Metrics