Abstract

We report the first observation of Stimulated Raman Scattering (SRS) in silicon waveguides. Amplification of the Stokes signal, at 1542.3 nm, of up to 0.25 dB has been observed in Silicon-on-Insulator (SOI) waveguides, using a 1427 nm pump laser with a CW power of 1.6 W, measured before the waveguide. Two-Photon-Absorption (TPA) measurements on these waveguides are also reported, and found to be negligible at the pump power where SRS was observed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, �??Optical gain in silicon nanocrystals,�?? Nature 408 , 440-444 (2000).
    [CrossRef] [PubMed]
  2. S. Coffa , �??ST sets world record for silicon light emission�??, ST Press Release, Issue No. 3, November (2002).
  3. H.S. Han, S.Y. Seo, J.H. Shin, N. Park, �??Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,�?? Appl. Phys. Lett. 81, 3720-3722 (2002).
    [CrossRef]
  4. K. Dovidenko, J.C. Lofgren, F. de Freitas, Y.J. Seo, R. Tsu, �??Structure and optoelectronic properties of Si/O superlattice,�?? Physica E 16, 509-516 (2003).
    [CrossRef]
  5. T. Stoica, L. Vescan, A. Muck, B. Hollander, G. Schope, �??Electroluminescence on electron hole plasma in strained SiGe epitaxial layers,�?? Physica E 16, 359-365 (2003).
    [CrossRef]
  6. T. Trupke, J. Zhao, A. Wang, R. Corkish, M. A. Green, �??Very efficient light emission from bulk crystalline silicon,�??Appl. Phys. Lett. 82, 2996-2998 (2003).
    [CrossRef]
  7. L. Dal Negro, M. Cazanelli, N. Daldosso, Z. Gaburro, L. Pavesi, F. Priolo, D. Pacifici, G. Franzo, F. Iacona, �??Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,�?? Physica E 16, 297-308 (2003).
    [CrossRef]
  8. R. Claps, D. Dimitropoulos, B. Jalali, �??Stimulated Raman Scattering in Silicon Waveguides,�?? IEE Electron. Lett. 38, 1352-1354 (2002).
    [CrossRef]
  9. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, �??Observation of Raman emission in silicon waveguides at 1.54 µm,�?? Opt. Express 10, 1305-1313 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10- 22-1305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10- 22-1305</a>
    [CrossRef] [PubMed]
  10. P.A. Temple, C.E. Hathaway, �??Multiphonon Raman Spectrum of Silicon,�?? Phys. Rev. B 7, 3685-3697 (1973).
    [CrossRef]
  11. D. Dimitropoulos, B. Houshmand, R. Claps, B. Jalali, �??Coupled-mode theory of the Raman effect in Silicon-On-Insulator waveguides,�?? Optics Letters, accepted for publication (2003).
  12. D. Dimitropoulos, R. Claps, Y. Han, and B. Jalali, �??Nonlinear Optics in Silicon Waveguides: Stimulated Raman Scattering and Two-Photon Absorption,�?? Integrated Optics: Devices, Materials, and Technologies VII, Y. S. Sidorin, Ari Tervonen, Editors, Proceedings of SPIE Vol. 4987 140-148 (2003).
    [CrossRef]
  13. A. Yariv , Quantum Electronics , (John Wiley and Sons, Inc. 1989) ISBN 0-471-60997-8.
  14. J.M. Ralston, R.K. Chang, �??Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon,�?? Phys. Rev. B 2, 1858-1862 (1970).
    [CrossRef]
  15. G.P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001) ISBN 0-12-045143-3.
  16. Spectra-Physics Telecom: �??Model RL5 Raman Fiber Laser Specifications�??.
  17. E.A. Golovchenko, P.V. Mamyshev, A.N. Pilipetskii, E.M. Dianov, �??Mutual Influence of the Parametric Effects and Stimulated Raman Scattering in Optical Fibers,�?? IEEE J. of Quant. Elect. 26, 1815-1820 (1990).
    [CrossRef]
  18. H.K. Tsang, C.S. Wong, T.K. Lang, I.E. Day, S.W. Roberts, A. Harpin, J. Drake, M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  19. M. Dinu, F. Quochi, H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  20. F. Reintjes, J.C. McGroddy, �??Indirect Two-Photon Transitions in Si at 1.06 µm,�?? Phys. Rev. Lett. 30, 901-903 (1973).
    [CrossRef]
  21. Chris Xu, Winfried Denk, �??Two-photon optical beam induced current imaging through the backside of integrated circuits,�?? Appl. Phys. Lett. 71 2578-2580 (1997).
    [CrossRef]
  22. K. Kikuchi, �??Optical sampling system at 1.5 µm using two photon absorption in Si avalanche photodiode,�?? IEE Elecron. Lett. 34, 1354-1355 (1998).
    [CrossRef]
  23. M. Grimsditch, M. Cardona, �??Absolute Cross-Section for Raman Scattering by Phonons in Silicon,�?? Phys. Stat. Sol. B 102, 155 (1980).
    [CrossRef]

Appl. Phys. Lett.

H.S. Han, S.Y. Seo, J.H. Shin, N. Park, �??Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,�?? Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

T. Trupke, J. Zhao, A. Wang, R. Corkish, M. A. Green, �??Very efficient light emission from bulk crystalline silicon,�??Appl. Phys. Lett. 82, 2996-2998 (2003).
[CrossRef]

H.K. Tsang, C.S. Wong, T.K. Lang, I.E. Day, S.W. Roberts, A. Harpin, J. Drake, M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

M. Dinu, F. Quochi, H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Chris Xu, Winfried Denk, �??Two-photon optical beam induced current imaging through the backside of integrated circuits,�?? Appl. Phys. Lett. 71 2578-2580 (1997).
[CrossRef]

IEE Elecron. Lett.

K. Kikuchi, �??Optical sampling system at 1.5 µm using two photon absorption in Si avalanche photodiode,�?? IEE Elecron. Lett. 34, 1354-1355 (1998).
[CrossRef]

IEE Electron. Lett.

R. Claps, D. Dimitropoulos, B. Jalali, �??Stimulated Raman Scattering in Silicon Waveguides,�?? IEE Electron. Lett. 38, 1352-1354 (2002).
[CrossRef]

IEEE J. of Quant. Elect.

E.A. Golovchenko, P.V. Mamyshev, A.N. Pilipetskii, E.M. Dianov, �??Mutual Influence of the Parametric Effects and Stimulated Raman Scattering in Optical Fibers,�?? IEEE J. of Quant. Elect. 26, 1815-1820 (1990).
[CrossRef]

Nature

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, �??Optical gain in silicon nanocrystals,�?? Nature 408 , 440-444 (2000).
[CrossRef] [PubMed]

Opt. Express

Optics Letters

D. Dimitropoulos, B. Houshmand, R. Claps, B. Jalali, �??Coupled-mode theory of the Raman effect in Silicon-On-Insulator waveguides,�?? Optics Letters, accepted for publication (2003).

Phys. Rev. B

J.M. Ralston, R.K. Chang, �??Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon,�?? Phys. Rev. B 2, 1858-1862 (1970).
[CrossRef]

P.A. Temple, C.E. Hathaway, �??Multiphonon Raman Spectrum of Silicon,�?? Phys. Rev. B 7, 3685-3697 (1973).
[CrossRef]

Phys. Rev. Lett.

F. Reintjes, J.C. McGroddy, �??Indirect Two-Photon Transitions in Si at 1.06 µm,�?? Phys. Rev. Lett. 30, 901-903 (1973).
[CrossRef]

Phys. Stat. Sol. B

M. Grimsditch, M. Cardona, �??Absolute Cross-Section for Raman Scattering by Phonons in Silicon,�?? Phys. Stat. Sol. B 102, 155 (1980).
[CrossRef]

Physica E

L. Dal Negro, M. Cazanelli, N. Daldosso, Z. Gaburro, L. Pavesi, F. Priolo, D. Pacifici, G. Franzo, F. Iacona, �??Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,�?? Physica E 16, 297-308 (2003).
[CrossRef]

K. Dovidenko, J.C. Lofgren, F. de Freitas, Y.J. Seo, R. Tsu, �??Structure and optoelectronic properties of Si/O superlattice,�?? Physica E 16, 509-516 (2003).
[CrossRef]

T. Stoica, L. Vescan, A. Muck, B. Hollander, G. Schope, �??Electroluminescence on electron hole plasma in strained SiGe epitaxial layers,�?? Physica E 16, 359-365 (2003).
[CrossRef]

Proceedings of SPIE

D. Dimitropoulos, R. Claps, Y. Han, and B. Jalali, �??Nonlinear Optics in Silicon Waveguides: Stimulated Raman Scattering and Two-Photon Absorption,�?? Integrated Optics: Devices, Materials, and Technologies VII, Y. S. Sidorin, Ari Tervonen, Editors, Proceedings of SPIE Vol. 4987 140-148 (2003).
[CrossRef]

Other

A. Yariv , Quantum Electronics , (John Wiley and Sons, Inc. 1989) ISBN 0-471-60997-8.

G.P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001) ISBN 0-12-045143-3.

Spectra-Physics Telecom: �??Model RL5 Raman Fiber Laser Specifications�??.

S. Coffa , �??ST sets world record for silicon light emission�??, ST Press Release, Issue No. 3, November (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup: Pump-CRC fiber laser; Ch-Chopper; PBS-Polarization Beam Splitter; LIA- Lock-in amplifier; ECDL-External cavity diode laser (tunable); FG-Function generator (60 GHz freq. range); VOA-Variable optical attenuator; PD-optically-broadband photodetector. Thick lines represent electrical connections and wiring, thin lines represent free-space optical beams, and colored lines represent optical fiber.

Fig. 2.
Fig. 2.

(a) Measured spectral characteristic of the Stimulated Raman Scattering (SRS) in the silicon waveguide. The error bars are the standard deviation from this average. The pump power was 0.64 W at the front facet of the waveguide. SRS Net Gain is the ratio of the amplitude of the LIA output to the average signal power throughput. (b) Spontaneous Raman Spectra of the same waveguide with the same pump power as in (a).

Fig. 3.
Fig. 3.

The maxima from each spectral scan are plotted against effective pump power coupled into the front facet of the waveguide. A maximum of 0.25 dB (6%) amplification is obtained.

Fig. 4.
Fig. 4.

Experimental setup for measuring TPA. The waveguide in this case is different from the one used for SRS. PC-Polarization controller; VOA-Variable optical attenuator; PBS - Polarization beam splitter; PD1 and PD2 photo-detectors (identical, Newport 1830-C).

Fig. 5.
Fig. 5.

Output power vs. input power results, using a mode-locked laser, and depicting a nonlinear relationship.

Fig. 6.
Fig. 6.

TPA measurement result. The input power, Pin, is not corrected for coupling losses. The linear behavior is maintained up to ~ 400 W.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R 1 = 1 2 ( 0 0 1 0 0 1 1 1 0 ) ; R 2 = 1 2 ( 0 0 1 0 0 1 1 1 0 ) ; R 3 = ( 1 0 0 0 1 0 0 0 0 ) .
S = S o j = 1 , 2 , 3 e ̂ s · R j · e ̂ i 2 , S o = k o 4 32 π 2 n V χ R 2
g s = 8 π c 2 ω p ħ ω s 4 n 2 ( ω s ) ( N + 1 ) Δ ω S
P S ( L ) = P S ( 0 ) exp ( γ L + g s P p ( 0 ) A · ( 1 + Δ ν p ( P p ) Δ ν R ) L eff ) .
P in P out = e γ L ( 1 + β L eff A P in ) .

Metrics