Abstract

A novel two-dimensional vertical cavity surface emission laser (VCSEL) based wavelength converter is proposed. We developed a two-dimensional transmission line laser model (TLLM) to analyze the proposed wavelength converter. This model takes into account Bragg reflectors by using the modified connecting matrix. Therefore, accurate and efficient modeling of the VCSEL structure is achieved. Extinction ratio of the output signal is investigated by considering input signal power, wavelength, facet reflectivity and cavity diameter.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Durhuus, B. Mikkesen, C. Joergensen, S. L. Danieselen, and K. E. Stubjkaer, �??All-optical wavelength conversion by semiconductor optical amplifiers,�?? J. Lightwave Technol. 14, 943-954 (1996).
    [CrossRef]
  2. S.L. Danielsen, P.B.Hansen, and K.E. Stubjær, �??Wavelength conversion in optical packet switching,�?? J. Lightwave Technol. 16, 2095-2108 (1998).
    [CrossRef]
  3. K. Obermann, S. Kindt, D. Breuer, and K. Petermann, �?? Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers,�?? J. Lightwave Technol. 16, 78-85 (1998).
    [CrossRef]
  4. K. Nonaka, H. Tsuda, H. Uenohara, H. Iwamura and T. Kurokawa, �??Optical nonlinear characteristics of a side-injection light-controlled laser diode with a multiple-quantum-well saturable absorption region,�?? IEEE Photon. Technol. Lett. 5, 139-141 (1993).
    [CrossRef]
  5. K. Nonaka, F. Kobayashi, K. Kishi, T. Tadokoro,Y. Itoh, C. Amano, and T. Kurokawa, �??Direct Time Domain Optical Demultiplexing of 10-Gb/s NRZ signals using side-injection light-controlled bistable laser diode,�?? IEEE Photon. Tech. Lett. 10, 1484-1486 (1998).
    [CrossRef]
  6. E. Höfling, R. Werner, F. Schäfer, J.P. Reithmaier and A. Forchel, �??Short-cavity edge-emitting lasers with deeply etched distributed Bragg mirrors,�?? Electron. Lett. 35, 154-155 (1999).
    [CrossRef]
  7. K. Iga, �??Surface-emitting laser-its birth and generation of new optoelectronics field,�?? IEEE J. Select. Topics Quantum Electron. 6, 1201-1215 (2000).
    [CrossRef]
  8. J. Cheng and N. K.Dutta, Verical-cavity surface-emitting lasers: technology and applications, (Gordon and Breach Science Publishers, 2000), Chap 1.
  9. S.F.Yu, �??Dynamic behavior of vertical-cavity surface-emitting lasers,�?? IEEE J. Quantum Electron. 32, 1168-1179 (1996).
    [CrossRef]
  10. S.F.Yu, �??An improved Time-Domain Travelling-Wave model for vertical-cavity surface-Emitting lasers,�?? IEEE J. Quantum Electron. 34, 1938-1948 (1998).
    [CrossRef]
  11. A. J. Lowery, �??Transmission-line modeling of semiconductor lasers: the transmission-line laser model�??, International Journal of numerical modeling: Electronic Networks, Devices and Fields, 2, 249-265 (1989).
    [CrossRef]
  12. H. Lee, H. Yoon, Y. Kim, and J. Jeong, �??Theoretical study of frequency chirping and extinction ration of wavelength-converted optical signals by XGM and XPM using SOA�??s,�?? IEEE J. Quantum Electron. 35, 1213-1219 (1999).
    [CrossRef]
  13. A.J.Lowery, �??Dynamic modeling of distributed-feedback lasers using scattering matrices,�?? Electron. Lett. 25, 1307-1308 (1989).
    [CrossRef]
  14. L.V.T. Nguyen, A.J. Lowey, P.C.R. Gurney, and D.Novak, �??A time domain model for high speed quantum well lasers including carrier transport effects,�?? IEEE J. Sel. Top. Quantum Electron. 1, 494-504 (1995).
    [CrossRef]
  15. P.J. Annets, M.Asghari and I.H. White, �??The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion on MQW semiconductor optical amplifiers,�?? IEEE J. Sel. Top. Quantum Electron. 3, 320-329 (1997).
    [CrossRef]

Electron. Lett. (2)

E. Höfling, R. Werner, F. Schäfer, J.P. Reithmaier and A. Forchel, �??Short-cavity edge-emitting lasers with deeply etched distributed Bragg mirrors,�?? Electron. Lett. 35, 154-155 (1999).
[CrossRef]

A.J.Lowery, �??Dynamic modeling of distributed-feedback lasers using scattering matrices,�?? Electron. Lett. 25, 1307-1308 (1989).
[CrossRef]

IEEE J. Quantum Electron. (3)

S.F.Yu, �??Dynamic behavior of vertical-cavity surface-emitting lasers,�?? IEEE J. Quantum Electron. 32, 1168-1179 (1996).
[CrossRef]

S.F.Yu, �??An improved Time-Domain Travelling-Wave model for vertical-cavity surface-Emitting lasers,�?? IEEE J. Quantum Electron. 34, 1938-1948 (1998).
[CrossRef]

H. Lee, H. Yoon, Y. Kim, and J. Jeong, �??Theoretical study of frequency chirping and extinction ration of wavelength-converted optical signals by XGM and XPM using SOA�??s,�?? IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L.V.T. Nguyen, A.J. Lowey, P.C.R. Gurney, and D.Novak, �??A time domain model for high speed quantum well lasers including carrier transport effects,�?? IEEE J. Sel. Top. Quantum Electron. 1, 494-504 (1995).
[CrossRef]

P.J. Annets, M.Asghari and I.H. White, �??The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion on MQW semiconductor optical amplifiers,�?? IEEE J. Sel. Top. Quantum Electron. 3, 320-329 (1997).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

K. Iga, �??Surface-emitting laser-its birth and generation of new optoelectronics field,�?? IEEE J. Select. Topics Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

K. Nonaka, F. Kobayashi, K. Kishi, T. Tadokoro,Y. Itoh, C. Amano, and T. Kurokawa, �??Direct Time Domain Optical Demultiplexing of 10-Gb/s NRZ signals using side-injection light-controlled bistable laser diode,�?? IEEE Photon. Tech. Lett. 10, 1484-1486 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Nonaka, H. Tsuda, H. Uenohara, H. Iwamura and T. Kurokawa, �??Optical nonlinear characteristics of a side-injection light-controlled laser diode with a multiple-quantum-well saturable absorption region,�?? IEEE Photon. Technol. Lett. 5, 139-141 (1993).
[CrossRef]

International J. Numerical Modeling (1)

A. J. Lowery, �??Transmission-line modeling of semiconductor lasers: the transmission-line laser model�??, International Journal of numerical modeling: Electronic Networks, Devices and Fields, 2, 249-265 (1989).
[CrossRef]

J. Lightwave Technol. (3)

Other (1)

J. Cheng and N. K.Dutta, Verical-cavity surface-emitting lasers: technology and applications, (Gordon and Breach Science Publishers, 2000), Chap 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Co-propagating and counter-propagating wavelength converter

Fig. 2.
Fig. 2.

(a) Schematic of two-dimension wavelength converter. (b) VCSEL based two-dimension wavelength converter

Fig. 3.
Fig. 3.

Schematic of the two-dimension TLLM

Fig. 4.
Fig. 4.

Pulse pattern of probe wave (upper) and signal wave (lower) at 2.5G (R1=97.4%, R2=55%, nm λsignal =1565,nm, λprobe =1525nm, the extinction ratio of input signal=10dB, dotted line represents the steady output power)

Fig. 5.
Fig. 5.

Contour plot of the extinction ratio with signal wavelength and probe wavelength (R1=97.4%, R2=55%, the extinction ratio of input signal=10dB)

Fig. 6.
Fig. 6.

Extinction ratio of the probe wave as a function of input power of signal wave at different facet reflectivity, with the signal wave located at the peak of the gain curve and probe wave located at 40nm and -40nm shift from the gain peak respect (the solid line λsignal =1565nm, λprobe =λP -40nm, i.e., 1525nm, the dotted line λsignal =1565nm, λprobe =λP -40nm, i.e.1605nm)

Fig. 7.
Fig. 7.

The evolution of the signal power in the transverse direction of the signal wave at different facet reflectivity (λsignal =1565nm, λprobe =1525nm, input power=25mW).

Fig. 8.
Fig. 8.

The evolution of the extinction ratio in the transverse direction of the probe wave at different facet reflectivity. (λsignal =1565nm, λprobe =1525nm, input power=25mW).

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

t [ F P ( n , m ) ] r = S p * t [ F P ( n , m ) ] i + t [ I sp ( n , m ) Z p T 2 ]
t [ B P ( n , m ) ] r = S p * t [ B P ( n , m ) ] i + t [ I sp ( n , m ) Z p T 2 ]
t [ F S ( n , m ) ] r = S S * t [ F S ( n , m ) ] i + t [ I sp ( n , m ) Z p T 2 ]
t [ B S ( n , m ) ] r = S S * t [ B P ( n , m ) ] i + t [ I sp ( n , m ) Z p T 2 ]
I sp ( z , x , t ) I sp * ( z , x , t ) = 2 β LR sp δ ( z z ) δ ( x x ) δ ( t t ) × hf Z p
g ( N , λ k ) = a 0 ln ( N N 0 ) a 1 ( λ k λ p ) 2 + a 2 ( λ k λ p ) 3 1 + ε ( P S + P P )
t + 1 [ F P ( n + 1 , m ) ] i = C p * t [ F P ( n , m ) ] r
t + 1 [ B P ( n , m ) ] i = C p * t [ B P ( n + 1 , m ) ] r
t + 1 [ F S ( n , m + 1 ) ] i = C S * t [ F S ( n , m ) ] r
t + 1 [ B S ( n , m ) ] i = C S * t [ B P ( n , m + 1 ) ] r
t + 1 [ F P ( n + 1 , m ) B P ( n , m ) ] i = C P * t [ F P ( n , m ) B P ( n + 1 , m ) ] r
C P = [ 2 n l n h ( n l + n h ) ( n l n h ) ( n l + n h ) ( n l n h ) ( n l + n h ) 2 n l n h ( n l + n h ) ]
C P = [ 2 n l n h ( n l + n h ) ( n h n l ) ( n l + n h ) ( n h n l ) ( n l + n h ) 2 n l n h ( n l + n h ) ]
dN MQW dt = N SCH τ r · d SCH d MQW N MQW τ e N MQW τ rec ( MQW ) v g ( Γ P g P P P + Γ S g S P S )
dN SCH dt = J e · d SCH N SCH τ r + N MQW τ e · d MQW d SCH N SCH τ rec ( SCH )

Metrics