Abstract

We describe a hollow-core photonic bandgap fiber designed for use in the 850 nm wavelength region. The fiber has a minimum attenuation of 180dB/km at 847nm wavelength. The low-loss mode has a quasi-Gaussian intensity profile. The group-velocity dispersion of this mode passes through zero around 830nm, and is anomalous for longer wavelengths. The polarization beat length varies from 4 mm to 13 mm across the band gap. We expect this fiber to be useful for delivery of high-energy ultrashort optical pulses.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures,�?? Elect. Lett. 31, 1941-1942 (1995)
    [CrossRef]
  2. . R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  3. N. Venkataram, N. T. Gallagher, C. M. Smith, D. Müller, J. A. West, K. W. Koch, J. C. Fajardo, �??Low loss (13 dB/km) air core photonic band-gap fiber,�?? Postdeadline paper PD1.1, Proceeedings of the 28th European Conference on Optical Communication, Copenhagen (2002).
  4. J. A. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, D. C. Allan, �??Demonstration of an IR-optimized air-core photonic bandgap fiber,�?? Paper ThA2, Proceedings of the 27th European Conference on Optical Communication ECOC 2001, Amsterdam, Netherlands (2001).
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Optical properties of high-delta air-silica microstructure optical fibers,�?? Opt. Lett. 25, 796-798 (2000).
    [CrossRef]
  6. D. Muller, J. West and K. Koch, �??Interferometric Chromatic Dispersion Measurement of a Photonic Bandgap Fiber,�?? in Active and Passive Components for WDM communications II, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamoto, Eds. Proc. SPIE 4870, 395-403 (2002).
    [CrossRef]
  7. T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, A. Bjarklev, �??Air guidance over 345m large-core photonic bandgap fiber,�?? Postdeadline paper PD4-1, OFC2003, Atlanta (2003).
  8. K. Saitoh, M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photon. Technol. Lett. 14 1291-1293 (2002).
    [CrossRef]
  9. J. Jasapara, R. Bise, and R. Windeler, �??Chromatic dispersion measurements in a photonic bandgap fibre,�?? Proc. OFC 2002 519-521 (2002).
  10. D. Ouzounov, F. Ahmad, A. Gaeta, M. Gallagher, K. Koch, D. Müller, N. Venkataraman, �??Dispersion and nonlinear propagation in air-core photonic bandgap fibers,�?? paper CThV5, CLEO 2003, Baltimore
  11. D. Ouzounov, F. R. Ahmad, A. L. Gaeta, D. Müller, N. Venkataraman, M. T. Gallagher and K. Koch, �??Generation of high-power, non-frequency shifted solitons in a gas-filled photonic bandgap fiber,�?? Postdeadline QThPDA3, CLEO 2003, Baltimore (2003).

Elect. Lett.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures,�?? Elect. Lett. 31, 1941-1942 (1995)
[CrossRef]

IEEE Photon. Technol. Lett.

K. Saitoh, M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photon. Technol. Lett. 14 1291-1293 (2002).
[CrossRef]

Opt. Lett.

Science

. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other

N. Venkataram, N. T. Gallagher, C. M. Smith, D. Müller, J. A. West, K. W. Koch, J. C. Fajardo, �??Low loss (13 dB/km) air core photonic band-gap fiber,�?? Postdeadline paper PD1.1, Proceeedings of the 28th European Conference on Optical Communication, Copenhagen (2002).

J. A. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, D. C. Allan, �??Demonstration of an IR-optimized air-core photonic bandgap fiber,�?? Paper ThA2, Proceedings of the 27th European Conference on Optical Communication ECOC 2001, Amsterdam, Netherlands (2001).

J. Jasapara, R. Bise, and R. Windeler, �??Chromatic dispersion measurements in a photonic bandgap fibre,�?? Proc. OFC 2002 519-521 (2002).

D. Ouzounov, F. Ahmad, A. Gaeta, M. Gallagher, K. Koch, D. Müller, N. Venkataraman, �??Dispersion and nonlinear propagation in air-core photonic bandgap fibers,�?? paper CThV5, CLEO 2003, Baltimore

D. Ouzounov, F. R. Ahmad, A. L. Gaeta, D. Müller, N. Venkataraman, M. T. Gallagher and K. Koch, �??Generation of high-power, non-frequency shifted solitons in a gas-filled photonic bandgap fiber,�?? Postdeadline QThPDA3, CLEO 2003, Baltimore (2003).

D. Muller, J. West and K. Koch, �??Interferometric Chromatic Dispersion Measurement of a Photonic Bandgap Fiber,�?? in Active and Passive Components for WDM communications II, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamoto, Eds. Proc. SPIE 4870, 395-403 (2002).
[CrossRef]

T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, A. Bjarklev, �??Air guidance over 345m large-core photonic bandgap fiber,�?? Postdeadline paper PD4-1, OFC2003, Atlanta (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the 850 nm air-core fiber used in this work. The outer diameter of the fiber is 85 µm.

Fig. 2.
Fig. 2.

Attenuation recorded using a cutback measurement on 56 m of fiber. Outside of this spectral window, no low-loss wavelength bands were observed.

Fig. 3.
Fig. 3.

(a) Near-field pattern of the guided mode, recorded at a wavelength of 848 nm after transmission through 60 m of fiber (linear scale). The location of the first few rings of air holes are represented schematically as the orange outlines. (b) Line plots through the two axes of the elliptical core, in a logarithmic scale, with arrows indicating the positions of the core wall. The inset shows the far-field pattern, as recorded on infrared photographic film.

Fig. 4.
Fig. 4.

Near-field patterns observed after transmission through 60 m of fiber on the edges of the guided wavelength range at 790 nm (left) and 898 nm (right), plotted on a linear scale. The locations of the air holes in the first few rings around the core are shown schematically.

Fig. 5.
Fig. 5.

Near-field patterns of higher-order modes excited in a short piece of fiber (1 m length) at a wavelength of 882 nm, plotted on a linear scale. The two plots correspond to different excitation conditions. The locations of the air holes in the first few rings around the core are shown schematically.

Fig. 6.
Fig. 6.

Measured beat length for the fundamental polarization modes as a function of wavelength across the guiding wavelength band. Inset shows an example of the data used to measure the beat length, showing the intensity transmitted through the polarizer as the mechanical disturbance is slid along the fiber length. The fringes are not uniformly spaced only because the speed of the mechanical disturbance was not constant.

Fig. 7.
Fig. 7.

Group velocity dispersion curves measured for the two polarization modes using the time-domain technique. Output pulse lengths were measured with an autocorrelator, and the sign of the dispersion was obtained from the low-coherence data. The attenuation curve is shown here for ease of reference.

Tables (1)

Tables Icon

Table 1. Modal index for the two polarization modes measured on a short (30 cm) length of fiber using low-coherence interferometry. The group velocity dispersion is seen to be strongly anomalous between 850 nm and 900 nm.

Metrics