Abstract

Fluctuations of Bit-Error-Rate (BER) stimulated by birefringent disorder in an optical fiber system are found to be strong. The effect may not be analyzed in terms of the average BER but rather requires analyzing the Probability Distribution Function (PDF) of BER. We report the emergence of the extremely extended algebraic-like tail of the PDF, corresponding to anomalously large values of BER. We analyze the dependence of the PDF tail, and thus the outage probability, on the first-order PMD compensation scheme. Effectiveness of compensation is illustrated quantitatively using a simple, however, practical example.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. D. Poole and J. A. Nagel, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Ca. 1997), Vol. IIIA, pp. 114.
  2. R. M. Jopson, L. E. Nelson, G. J. Pendlock, and A. H. Gnauck, �??Polarization mode dispersion impairment in return to zero and non-return-tozero systems,�?? in Tech. Digest Optical Fiber Communication Conf. (OFC�??99), WE3 (1999).
  3. F. Heismann, ECOC�??98 Digest 2, 51 (1998).
  4. J. P. Gordon and H. Kogelnik, �??PMD fundamentals: Polarization mode dispersion in optical fibers,�?? PNAS 97, 4541 (2000).
    [CrossRef] [PubMed]
  5. T. Ono, S. Yamazaki, H. Shimizu, and H. Emura, �??Polarization control method for supressing polarization mode dispersion in optical transmission systems,�?? J. Ligtware Technol. 12, 891 (1994).
    [CrossRef]
  6. F. Heismann, D. Fishman, and D. Wilson, �??Automatic compensation of first-order polarization mode dispersion in a 10 Gb/s transmission system," in Proc. ECOC98, 529-530 (1998).
  7. L. Moller and H. Kogelnik, �??PMD emulator restricted to first and second order PMD generation," in PROC. ECOC99, 64-65 (1999).
  8. H. Bülow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, �??PMD mitigation at 10 Gbit/s using linear and nonlinear integrated electronic circuits," Electron. Lett. 36, 163 (2000).
    [CrossRef]
  9. C. D. Poole and R. E. Wagner, �??Phenomenological approach to polarization dispersion in long single-mode fibres,�?? Electron. Lett. 22, 1029 (1986).
    [CrossRef]
  10. C. D. Poole, �??Statistical treatment of polarization dispersion in single-mode fiber,�?? Opt. Lett. 13, 687 (1988); 14, 523 (1989).
    [CrossRef] [PubMed]
  11. C. D. Poole, J. H. Winters, and J. A. Nagel, �??Dynamical equation for polarization dispersion,�?? Opt. Lett. 16, 372 (1991).
    [CrossRef] [PubMed]
  12. H. Bülow, �??System outage probability due to first- and second-order PMD,�?? IEEE Phot. Tech. Lett. 10, 696 (1998).
    [CrossRef]
  13. H. Kogelnik, L. E. Nelson, J. P. Gordon, and R. M. Jopson, �??Jones matrix for second-order polarization mode dispersion,�?? Opt. Lett. 25, 19 (2000).
    [CrossRef]
  14. A. Eyal, Y. Li, W. K. Marshall, A. Yariv, and M. Tur, �??Statistical determination of the length dependence of high-order polarization mode dispersion,�?? Opt. Lett. 25, 875 (2000).
    [CrossRef]
  15. E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley & Sons, 1994).

Electron. Lett.

H. Bülow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, �??PMD mitigation at 10 Gbit/s using linear and nonlinear integrated electronic circuits," Electron. Lett. 36, 163 (2000).
[CrossRef]

C. D. Poole and R. E. Wagner, �??Phenomenological approach to polarization dispersion in long single-mode fibres,�?? Electron. Lett. 22, 1029 (1986).
[CrossRef]

IEEE Phot. Tech. Lett.

H. Bülow, �??System outage probability due to first- and second-order PMD,�?? IEEE Phot. Tech. Lett. 10, 696 (1998).
[CrossRef]

J. Lightwave Technol.

T. Ono, S. Yamazaki, H. Shimizu, and H. Emura, �??Polarization control method for supressing polarization mode dispersion in optical transmission systems,�?? J. Ligtware Technol. 12, 891 (1994).
[CrossRef]

Opt. Lett.

PNAS 97

J. P. Gordon and H. Kogelnik, �??PMD fundamentals: Polarization mode dispersion in optical fibers,�?? PNAS 97, 4541 (2000).
[CrossRef] [PubMed]

Other

E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley & Sons, 1994).

F. Heismann, D. Fishman, and D. Wilson, �??Automatic compensation of first-order polarization mode dispersion in a 10 Gb/s transmission system," in Proc. ECOC98, 529-530 (1998).

L. Moller and H. Kogelnik, �??PMD emulator restricted to first and second order PMD generation," in PROC. ECOC99, 64-65 (1999).

C. D. Poole and J. A. Nagel, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Ca. 1997), Vol. IIIA, pp. 114.

R. M. Jopson, L. E. Nelson, G. J. Pendlock, and A. H. Gnauck, �??Polarization mode dispersion impairment in return to zero and non-return-tozero systems,�?? in Tech. Digest Optical Fiber Communication Conf. (OFC�??99), WE3 (1999).

F. Heismann, ECOC�??98 Digest 2, 51 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Dependence of the dimensionless coefficients Γ0=-D ξ zlnB 0/I 0, µ 1, µ 2, µ2/β and µ 3, entering Eqs.(5,8,10) on the slot size T and the optical filter width τ, both measured in the units of the pulse width b. The coefficients are calculated numerically using the simple model explained in the text.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I = d t G ( t ) К Ψ ( Z , t ) 2 ,
ϕ α ( Z , t 1 ) ϕ β * ( Z , t 2 ) = D ξ Z δ α β δ ( t 1 t 2 ) .
φ = exp ( i 0 Z d z d ( z ) t 2 ) U ̂ Ψ 0 ( t ) , U ̂ = T exp [ 0 Z d z m ̂ ( z ) t ] ,
h i ( z 1 ) h j ( z 2 ) = D m δ i j δ ( z 1 z 2 ) .
a ) exp [ D ξ 2 Z b 2 2 D m μ 1 2 I 0 2 ln 2 ( B B 0 ) ] d B B , b ) B 0 α d B B 1 + α ,
К 1 ( M ) = exp ( M j σ ̂ j t ) ,
Γ = ( μ 2 b 2 ) 0 Z d z 0 z d z [ h 1 ( z ) h 2 ( z ) h 2 ( z ) h 1 ( z ) ] ,
S ( B ) d B ~ B 0 γ d B B 1 + γ , γ π D ξ b 2 2 μ 2 D m I 0 ,
Γ = μ 3 b 3 0 Z d z 1 0 z 1 d z 2 0 z 2 d z 3 { 2 h 3 ( z 1 ) ( z 2 , z 3 ) h 3 ( z 2 ) ( z 1 , z 3 ) h 3 ( z 3 ) ( z 1 , z 2 ) } ,
ln S 4.2 ( D ξ Z I 0 ) 2 3 b 2 μ 3 2 3 D m Z ( ln B B 0 ) 2 3 .

Metrics