Abstract

It is known that human eyes are effectively polarization-blind. Therefore, in order to display the polarization information in an image, one may require exhibiting such information using other visual cues that are compatible with the human visual system and can be easily detectable by a human observer. Here, we present a technique for displaying polarization information in an image using coherently moving dots that are superimposed on the image. Our examples show that this technique would allow the image segments with polarization signals to “pop out” easily, which will lead to better target feature detection and visibility enhancement.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. von Frisch, “Die polarisation des himmelslichtes als orientierender faktor bei den tanzen der bienen,” Experientia 5, 142–148 (1949).
    [CrossRef]
  2. T. Labhart, “Polarization opponent interneurons in the insect visual system,” Nature 331, 435–437 (1988)
    [CrossRef]
  3. R. Wehner, “Neurobiology of polarization vision,” Trends in Neurosciences 12, 353–359 (1989).
    [CrossRef] [PubMed]
  4. T. H. Waterman, “Polarization sensitivity,” in The Handbook of Sensory Physiology vol. VII/6B Vision in Invertebrates, edited by H. Autrum (Springer-Verlag, New York, 1981).
  5. R. Wehner, “Polarized-light navigation by insects,” Scientific American 235, 106–114 (1976).
    [CrossRef] [PubMed]
  6. J. N. Lythgoe, C. C. Hemmings, “Polarized Light and Underwater Vision,” Nature 213, 893–894 (1967).
    [CrossRef] [PubMed]
  7. M. P. Rowe, E. N. Pugh, Jr., J. S. Tyo, N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett. 20, 608–610 (1995).
    [CrossRef] [PubMed]
  8. J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., N. Engheta, “Target detection in optically scattered media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
    [CrossRef] [PubMed]
  9. J. S. Tyo, E. N. Pugh, Jr., N. Engheta, “Colorimetric representation for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374 (1998).
    [CrossRef]
  10. W. Curran, O. J. Braddick, “Speed and direction of locally-paired dot patterns,” Vision Res. 40, 2115–2124 (2000).
    [CrossRef] [PubMed]
  11. W. A. van de Grind, A. J. van Doorn, J. J. Koenderink, “Detection of coherent motion in peripherally viewed random-dot patterns,” J. Opt. Soc. Am. 73, 1674–1683 (1983).
    [CrossRef] [PubMed]
  12. E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
    [CrossRef]
  13. J. S. Tyo, “Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system,” J. Opt. Soc. Am. A. 15, 359–366 (1998).
    [CrossRef]

2000 (1)

W. Curran, O. J. Braddick, “Speed and direction of locally-paired dot patterns,” Vision Res. 40, 2115–2124 (2000).
[CrossRef] [PubMed]

1999 (1)

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

1998 (2)

J. S. Tyo, “Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system,” J. Opt. Soc. Am. A. 15, 359–366 (1998).
[CrossRef]

J. S. Tyo, E. N. Pugh, Jr., N. Engheta, “Colorimetric representation for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374 (1998).
[CrossRef]

1996 (1)

1995 (1)

1989 (1)

R. Wehner, “Neurobiology of polarization vision,” Trends in Neurosciences 12, 353–359 (1989).
[CrossRef] [PubMed]

1988 (1)

T. Labhart, “Polarization opponent interneurons in the insect visual system,” Nature 331, 435–437 (1988)
[CrossRef]

1983 (1)

1976 (1)

R. Wehner, “Polarized-light navigation by insects,” Scientific American 235, 106–114 (1976).
[CrossRef] [PubMed]

1967 (1)

J. N. Lythgoe, C. C. Hemmings, “Polarized Light and Underwater Vision,” Nature 213, 893–894 (1967).
[CrossRef] [PubMed]

1949 (1)

K. von Frisch, “Die polarisation des himmelslichtes als orientierender faktor bei den tanzen der bienen,” Experientia 5, 142–148 (1949).
[CrossRef]

Blake, R.

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Braddick, O. J.

W. Curran, O. J. Braddick, “Speed and direction of locally-paired dot patterns,” Vision Res. 40, 2115–2124 (2000).
[CrossRef] [PubMed]

Curran, W.

W. Curran, O. J. Braddick, “Speed and direction of locally-paired dot patterns,” Vision Res. 40, 2115–2124 (2000).
[CrossRef] [PubMed]

Engheta, N.

Grossman, E. D.

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Hemmings, C. C.

J. N. Lythgoe, C. C. Hemmings, “Polarized Light and Underwater Vision,” Nature 213, 893–894 (1967).
[CrossRef] [PubMed]

Koenderink, J. J.

Labhart, T.

T. Labhart, “Polarization opponent interneurons in the insect visual system,” Nature 331, 435–437 (1988)
[CrossRef]

Lythgoe, J. N.

J. N. Lythgoe, C. C. Hemmings, “Polarized Light and Underwater Vision,” Nature 213, 893–894 (1967).
[CrossRef] [PubMed]

Pugh, Jr., E. N.

Rowe, M. P.

Tyo, J. S.

van de Grind, W. A.

van Doorn, A. J.

von Frisch, K.

K. von Frisch, “Die polarisation des himmelslichtes als orientierender faktor bei den tanzen der bienen,” Experientia 5, 142–148 (1949).
[CrossRef]

Waterman, T. H.

T. H. Waterman, “Polarization sensitivity,” in The Handbook of Sensory Physiology vol. VII/6B Vision in Invertebrates, edited by H. Autrum (Springer-Verlag, New York, 1981).

Wehner, R.

R. Wehner, “Neurobiology of polarization vision,” Trends in Neurosciences 12, 353–359 (1989).
[CrossRef] [PubMed]

R. Wehner, “Polarized-light navigation by insects,” Scientific American 235, 106–114 (1976).
[CrossRef] [PubMed]

Appl. Opt. (1)

Experientia (1)

K. von Frisch, “Die polarisation des himmelslichtes als orientierender faktor bei den tanzen der bienen,” Experientia 5, 142–148 (1949).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

J. S. Tyo, “Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system,” J. Opt. Soc. Am. A. 15, 359–366 (1998).
[CrossRef]

Nature (2)

J. N. Lythgoe, C. C. Hemmings, “Polarized Light and Underwater Vision,” Nature 213, 893–894 (1967).
[CrossRef] [PubMed]

T. Labhart, “Polarization opponent interneurons in the insect visual system,” Nature 331, 435–437 (1988)
[CrossRef]

Opt. Lett. (1)

Scientific American (1)

R. Wehner, “Polarized-light navigation by insects,” Scientific American 235, 106–114 (1976).
[CrossRef] [PubMed]

Trends in Neurosciences (1)

R. Wehner, “Neurobiology of polarization vision,” Trends in Neurosciences 12, 353–359 (1989).
[CrossRef] [PubMed]

Vision Res. (2)

W. Curran, O. J. Braddick, “Speed and direction of locally-paired dot patterns,” Vision Res. 40, 2115–2124 (2000).
[CrossRef] [PubMed]

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Other (1)

T. H. Waterman, “Polarization sensitivity,” in The Handbook of Sensory Physiology vol. VII/6B Vision in Invertebrates, edited by H. Autrum (Springer-Verlag, New York, 1981).

Supplementary Material (14)

» Media 1: AVI (2566 KB)     
» Media 2: AVI (12854 KB)     
» Media 3: AVI (2590 KB)     
» Media 4: AVI (15330 KB)     
» Media 5: AVI (1528 KB)     
» Media 6: AVI (10562 KB)     
» Media 7: AVI (2606 KB)     
» Media 8: AVI (1548 KB)     
» Media 9: AVI (10708 KB)     
» Media 10: AVI (2642 KB)     
» Media 11: AVI (13274 KB)     
» Media 12: AVI (1238 KB)     
» Media 13: AVI (6302 KB)     
» Media 14: AVI (13088 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(2.5 MB movie) A collection of randomly located dots on a dark background. Click here to start the movie. One can see that the region with coherently moving dots can be easily “popped out” against the background having randomly moving dots. Other information: image size: 316×316 pixels, cell size: 7×7, dot’s pixel intensity: 255, frame rate: 20frames/sec, dot’s speed in the region with coherently moving dots: 20 pixels/sec. (12.5 MB version)

Fig. 2.
Fig. 2.

(a) PS image and (b) PD image of the target to which we apply the polarization-to-moving-dots mapping strategy introduced here. These target images were originally obtained and used in our previous study of polarization difference imaging (PDI) reported in (Fig. 1 in[9]). The light scattered from the two square patch areas are slightly partially polarized parallel to the direction of abrasion on these patches. The goal here is to map the polarization information contained in the PD image into the PS image by using coherently moving dots. Image size: 512×479 pixels.

Fig. 3.
Fig. 3.

(2.5 MB and 1.5 MB movies.) Implementation of the mapping technique described here on the image of target shown in Fig. 2. Polarization information from the affine transformed PD image (Fig. 2(b)) is mapped as moving dots onto the PS image (Fig. 2(a)). Here the threshold value is chosen to be δ=32 for the affine transformed PD values. In (a), the dot intensity is prescribed using the “contrast scheme,” while in (b) it is chosen using the “percentage scheme” with M=30%. Viewing the moving dots, our visual system can distinguish among the regions with PD>δ, PD<-δ, and -δ<PD<δ PD signals. Other information: Image size: 340×316 pixels, cell size: 7×7 pixels, frame rate: 20frames/sec. ((a) 14.9 MB version, (b) 10.3 MB version).

Fig. 4.
Fig. 4.

(2.54 MB and 1.51 MB movies.) Similar to Fig. 3, except here the threshold value is chosen to be δ=48 for the affine transformed PD values. We note that the higher threshold value results in having smaller regions with coherently moving dots, thus highlighting the patch areas where the PD signal has higher absolute values. Other information: Image size: 340×316 pixels, cell size: 7×7 pixels, frame rate: 20 frames/sec. ((a) 12.7 MB version, (b) 10.4 MB version).

Fig. 5.
Fig. 5.

(2.58 MB and 1.2 MB movies.) Similar description as Fig. 3, except here the moving dots form short line with time-varying lengths, resulting in additional cues to visualize polarization information from the PD image given in Fig. 2(b). Other information: Image size: 340×316 pixels, cell size: 7×7 pixels, frame rate: 20 frames/sec. ((a) 12.9 MB version, (b) 6.15 MB version).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PS I ( x , y ) = I ( x , y ) + I ( x , y ) ,
PD I ( x , y ) = I ( x , y ) I ( x , y ) ,

Metrics