Abstract

For the first time, the design and demonstration of a near continuous spectral processing mode broadband equalizer is described using the earlier proposed macro-pixel spatial approach for multiwavelength fiber-optic attenuation in combination with a high spectral resolution broadband transmissive volume Bragg grating. The demonstrated design features low loss and low polarization dependent loss with broadband operation. Such an analog mode spectral processor can impact optical applications ranging from test and instrumentation to dynamic all-optical networks.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. H. Huang, X. Y. Zou, S.-M. Hwang, A. E. Willner, Z. Bao, and D. A. Smith, �?? Experimental demonstration of dynamic network equalization of three 2.5 Gb/s WDM channels over 100 km using acousto-optic tunable filters,�?? IEEE Photon. Tech. Lett. 8, 1243-1245 (1996).
    [CrossRef]
  2. H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, �??Actively gain-flattened erbium-dopped fiber amplifier over 35 nm by using all fiber acousto-optic tunable filters,�?? IEEE Photon. Technol. Lett. 10, 790-792 (1998).
    [CrossRef]
  3. J. Sapriel, D. Charissoux, V. Voloshinov, V. Molchanov, �?? Tunable acoustooptic filters and equalizers for WDM applications,�?? IEEE J. Lightwave Technol. 20, 892-899 (2002).
    [CrossRef]
  4. M. C. Parker, A. D. Cohen, R. J. Mears, �?? Dynamic digital holographic wavelength filtering,�?? IEEE J. Lightwave Technol. 16, 1259-1270, (1998).
    [CrossRef]
  5. J. P. Kondis B. A. Scott, A. R. Ranalli, R. Lindquist, �?? Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers,�?? IEEE LEOS 14th Ann. Mtg. Proc. 1, 292-293 (2001).
  6. K. Hirabayashi, M. Wada, C. Amano, �??Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,�?? IEEE Photon. Technol. Lett. 13, 487-489 (2001).
    [CrossRef]
  7. J. E. Ford and J. A. Walker, �??Dynamic spectral power equalization using micro-opto-mechanics,�?? IEEE Photon. Technol. Lett. 10, 1440-1442, (1998).
    [CrossRef]
  8. Liaw Shien-Kuei, Ho Keang-Po, Chi Sien, �??Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 11, 797-799, (1999).
    [CrossRef]
  9. P.M.J Schiffer, C.R Doerr, L. W. Stulz, M. A. Cappuzzo, E. J. Laskowski, A. Paunescu, L.T. Gomez, �??Smart dynamic wavelength equalizer with on-chip spectrum analyzer,�?? IEEE Photon. Technol. Lett. 12, 1019-1021, (2000).
    [CrossRef]
  10. S. Wada, S. Abe, Y. Ota, B. Reichman, T. Imura, C. A. Daza, �??Variable gain equalizer using magneto-optics,�?? Optical Fiber Communication Conference (OFC) , 324 -326, ( 2002).
  11. N. A. Riza and Sarun Sumriddetchkajorn, �?? Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror devices,�?? Optics Letters, 24(5), 282-284 (1999).
    [CrossRef]
  12. N. A. Riza and N. Madamopoulos, �?? Synchronous amplitude and time control for an optimum dynamic range variable photonic delay line,�?? Appl. Opt. 38, 2309-2318 (1999).
    [CrossRef]
  13. N. A. Riza, �?? Fault-tolerant fiber-optical beam control modules,�?? US Patent No. 6,222,954, April 24, 2001.
  14. N. A. Riza, �?? Multi-technology multi-beam-former platform for robust fiber-optical beam control modules,�?? US Patent No. 6,525,863, Feb. 25, 2003.
  15. N. A. Riza and N. Madamopoulos, �??High Signal-to-Noise Ratio Birefringence Compensated Optical Delay Line using a Noise Reduction Scheme,�?? Opt. Lett. 20, 2351-2353, (1995).
    [CrossRef] [PubMed]
  16. Z. Yaqoob, Azhar A. Rizvi and N. A. Riza, �??Free-space wavelength multiplexed optical scanner,�?? Appl. Opt. 40, 6425-6438, ( 2001).
    [CrossRef]
  17. Martin van Buren and N. A. Riza, �?? Foundations for low loss fiber gradient-index lens pair coupling with the self-imaging mechanism,�?? Appl. Opt. 42, 550-565 (2003).
    [CrossRef] [PubMed]

Appl. Opt.

IEEE J. Lightwave Technol.

J. Sapriel, D. Charissoux, V. Voloshinov, V. Molchanov, �?? Tunable acoustooptic filters and equalizers for WDM applications,�?? IEEE J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

M. C. Parker, A. D. Cohen, R. J. Mears, �?? Dynamic digital holographic wavelength filtering,�?? IEEE J. Lightwave Technol. 16, 1259-1270, (1998).
[CrossRef]

IEEE Photon. Tech. Lett.

S. H. Huang, X. Y. Zou, S.-M. Hwang, A. E. Willner, Z. Bao, and D. A. Smith, �?? Experimental demonstration of dynamic network equalization of three 2.5 Gb/s WDM channels over 100 km using acousto-optic tunable filters,�?? IEEE Photon. Tech. Lett. 8, 1243-1245 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, �??Actively gain-flattened erbium-dopped fiber amplifier over 35 nm by using all fiber acousto-optic tunable filters,�?? IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

K. Hirabayashi, M. Wada, C. Amano, �??Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,�?? IEEE Photon. Technol. Lett. 13, 487-489 (2001).
[CrossRef]

J. E. Ford and J. A. Walker, �??Dynamic spectral power equalization using micro-opto-mechanics,�?? IEEE Photon. Technol. Lett. 10, 1440-1442, (1998).
[CrossRef]

Liaw Shien-Kuei, Ho Keang-Po, Chi Sien, �??Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 11, 797-799, (1999).
[CrossRef]

P.M.J Schiffer, C.R Doerr, L. W. Stulz, M. A. Cappuzzo, E. J. Laskowski, A. Paunescu, L.T. Gomez, �??Smart dynamic wavelength equalizer with on-chip spectrum analyzer,�?? IEEE Photon. Technol. Lett. 12, 1019-1021, (2000).
[CrossRef]

Opt. Lett.

Optics Letters

N. A. Riza and Sarun Sumriddetchkajorn, �?? Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror devices,�?? Optics Letters, 24(5), 282-284 (1999).
[CrossRef]

Other

N. A. Riza, �?? Fault-tolerant fiber-optical beam control modules,�?? US Patent No. 6,222,954, April 24, 2001.

N. A. Riza, �?? Multi-technology multi-beam-former platform for robust fiber-optical beam control modules,�?? US Patent No. 6,525,863, Feb. 25, 2003.

S. Wada, S. Abe, Y. Ota, B. Reichman, T. Imura, C. A. Daza, �??Variable gain equalizer using magneto-optics,�?? Optical Fiber Communication Conference (OFC) , 324 -326, ( 2002).

J. P. Kondis B. A. Scott, A. R. Ranalli, R. Lindquist, �?? Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers,�?? IEEE LEOS 14th Ann. Mtg. Proc. 1, 292-293 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Top and (b) side views of the designed and demonstrated broadband equalizer using the proposed macro-pixel approach. (c) shows the orientation of the utilized DMD macropixel chip containing many micromirrors. Each micromirror is a square of side d in length. (d) shows a low coupling loss design for the equalizer via the use of a pair of cylinders to implement imaging between G and the Chip along the y-direction.

Fig. 2.
Fig. 2.

Spectrum plot showing the measured 34.24 dB attenuation dynamic range of the equalizer. Solid curve showing the unattenuated 1550.62 nm input signal and the dashed curve is the maximum attenuated signal.

Fig. 3.
Fig. 3.

Spectrum plot showing the capability of the equalizer to generate (a) generalized optical spectrum, (b) different independently controlled passbands, (c) different independently controlled notch bands. (d) The equalizer measured 2.24 nm 3 dB spectral resolution.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ max = sin 1 [ ( λ max l ) sin θ c ] and θ min = sin 1 [ ( λ min l ) sin θ c ] ,
θ 1 = sin 1 [ { ( λ + 0.5 Δ λ ) l } sin θ c ] θ c and θ 2 = sin 1 [ [ { ( λ 0.5 Δ λ ) l } sin θ c ] θ c

Metrics