Abstract

We present comparative noise figure measurements on neodymium and ytterbium doped double-clad fiber amplifiers. While the neodymium doped amplifier showed the quantum-limited noise figure of 3 dB, the ytterbium doped amplifier exhibited excess noise due to its three-level system. We compared optical and electrical methods with respect to the accuracy and the suitability for high power measurements.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, ??All-solid-state neodymiumbased single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm,??Opt. Lett. 24, 469??471 (1999).
    [CrossRef]
  2. S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, ??Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,?? Opt. Lett. 26, 1326-1328 (2001).
    [CrossRef]
  3. P. We?els, M. Auerbach, and C. Fallnich, ??Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,?? Opt. Commun. 205, 215??219 (2002).
    [CrossRef]
  4. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley & Sons, Inc., New York, 1994).
  5. H. A. Haus, ??Noise Figure Definition Valid From RF to Optical Frequencies,?? IEEE J. Select. Topics Quantum Electron. 6, 240??247 (2000).
    [CrossRef]
  6. D. M. Baney, P. Gallion, and R. S. Tucker, ??Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers,?? Opt. Fiber Technol. 6, 122??154 (2000).
    [CrossRef]
  7. I. Jacobs, ??Dependence of Optical Amplifier Noise Figure on Relative-Intensity-Noise,?? J. Lightw. Technol. 13, 1461??1465 (1995).
    [CrossRef]
  8. H.-A. Bachor, A Guide to Experiments in Quantum Optics (WILEY-VCH, Weinheim, 1998).
  9. F. W. Willems and J. C. van der Plaats, ??Experimental Demonstration of Noise Figure Reduction Caused by Nonlinear Photon Statistics of Saturated EDFA??s,?? IEEE Photon. Technol. Lett. 7, 488??490 (1995).
    [CrossRef]
  10. M. Movassaghi, M. K. Jackson, V. M. Smith and W. J. Hallam, ??Noise Figure of Erbium-Doped Amplifiers in Saturated Operation,?? J. Lightw. Technol. 16, 812??817 (1998).
    [CrossRef]
  11. C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, ??Suppression of the Intensity Noise in a Diode-Pumped Neodymium:YAG Nonplanar Ring Laser,?? IEEE J. Quantum Electron. 30, 2907??2913 (1994).
    [CrossRef]
  12. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor, and I. Freitag, ??Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,?? J. Opt. Soc. Am. B 14, 2936??2945 (1997).
    [CrossRef]
  13. P. We?els and C. Fallnich, ??Polarization dependent gain in neodymium and ytterbium doped fiber amplifiers,?? Opt. Express 11, 530??534 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-530">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-530</a>

IEEE J. Quantum Electron.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, ??Suppression of the Intensity Noise in a Diode-Pumped Neodymium:YAG Nonplanar Ring Laser,?? IEEE J. Quantum Electron. 30, 2907??2913 (1994).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

H. A. Haus, ??Noise Figure Definition Valid From RF to Optical Frequencies,?? IEEE J. Select. Topics Quantum Electron. 6, 240??247 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

F. W. Willems and J. C. van der Plaats, ??Experimental Demonstration of Noise Figure Reduction Caused by Nonlinear Photon Statistics of Saturated EDFA??s,?? IEEE Photon. Technol. Lett. 7, 488??490 (1995).
[CrossRef]

J. Lightw. Technol.

M. Movassaghi, M. K. Jackson, V. M. Smith and W. J. Hallam, ??Noise Figure of Erbium-Doped Amplifiers in Saturated Operation,?? J. Lightw. Technol. 16, 812??817 (1998).
[CrossRef]

I. Jacobs, ??Dependence of Optical Amplifier Noise Figure on Relative-Intensity-Noise,?? J. Lightw. Technol. 13, 1461??1465 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

P. We?els, M. Auerbach, and C. Fallnich, ??Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,?? Opt. Commun. 205, 215??219 (2002).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

D. M. Baney, P. Gallion, and R. S. Tucker, ??Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers,?? Opt. Fiber Technol. 6, 122??154 (2000).
[CrossRef]

Opt. Lett.

Other

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley & Sons, Inc., New York, 1994).

H.-A. Bachor, A Guide to Experiments in Quantum Optics (WILEY-VCH, Weinheim, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of the fiber amplifier for the noise figure measurements.

Fig. 2.
Fig. 2.

Spectral hole burning and polarization dependent gain in Nd. The ASE spectral density is higher in the polarization state perpendicular to the main signal due to polarization dependent gain (main figure). The actual ASE-level at the signal level was determined by extrapolation of the ASE-bands on both sides of the main signal (inset).

Fig. 3.
Fig. 3.

Noise figure measurements on the Nd doped amplifier with the electrical (a) and the optical method (b).

Fig. 4.
Fig. 4.

Noise figure measurements on the Yd doped amplifier with the electrical (a) and the optical method (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

NF = SNR in SNR out = 1 G 2 Δ 2 P out Δ 2 P in
Δ 2 P out = G 2 · Δ 2 P in + G 1 · Δ 2 P out shot
NF ideal = 1 + G 1 G
NF = Δ 2 I ph 2 · e · I ph · G = Δ 2 I ph Δ 2 I ph shot · G
ONF = 2 · ρ ASE G · h · ν + 1 G

Metrics