Abstract

Photonic crystal fibers are highly attractive as nonlinear media as they combine a large nonlinear coefficient and a highly customizable zero dispersion wavelength - flexibility not found in any other medium. However, the high dispersion slope at the zero-dispersion wavelength demonstrated so far is very limiting to the useful bandwidth. We propose a new fiber design comprising a hybrid core-region with three-fold symmetry that enables unprecedented dispersion control while maintaining low loss and a high nonlinear coefficient. The lowest dispersion slope obtained is 1·10-3ps/(km·nm2) or one order of magnitude lower than for conventional slope reduced nonlinear fibers. The nonlinear coefficient is more than 11 (W·km)-1 and loss below 7.9 dB/km at 1.55 µm has been achieved.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson "Nonlinearity in holy optical fibers: measurement and future opportunities" Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  2. K.P. Hansen, J.R. Jensen, C. Jacobsen, H.R. Simonsen, J. Broeng, P.M.W. Skovgaard, A. Petersson, and A. Bjarklev "Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 µm" Conference on Optical Fiber Communication - Post Deadline, (Anaheim, California, USA 2002).
  3. K.P. Hansen, J.R. Folkenberg, A. Petersson, and A. Bjarklev "Properties of Nonlinear Photonic Crystal Fibers for Telecommunication Applications" Conference on Optical Fiber Communication, 694-695 (Atlanta, Georgia, USA 2003).
  4. K.S. Berg, L. Oxenløwe, A. Siahlo, A. Tersigni, A.T. Clausen, C. Peucheret, P. Jeppesen, K.P. Hansen, and J.R. Jensen "80 Gb/s transmission over 80 km and demultiplexing using a highly nonlinear photonic crystal fibre" European Conference on Optical Communication, (Copenhagen, Denmark 2002).
  5. L.K. Oxenløwe, A. Siahlo, K.S. Berg, A. Tersigni, C. Peucheret, A.T. Clausen, K.P. Hansen, and J.R. Jensen "A photonic crystal fibre used as a 160 to 10 Gb/s demultiplexer" OptoElectronics and Communications Conference - Post Deadline (Yokohama, Japan, 2002).
  6. W.H. Reeves, J.C. Knight, and P.St.J. Russel "Demonstration of ultra-flattened dispersion in photonic crystal fibers" Opt. Express 10, 609-613 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>.
    [CrossRef] [PubMed]
  7. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion" Opt. Express 11, 843-852 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>.
    [CrossRef] [PubMed]
  8. J. Hiroshi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S.-I. Matsushita, H. obioka, S. Namiki, and T. Yagi "Dispersion slope controlled HNL-DSF with high gamma of 25 W-1km-1 and band conversion experiments using this fiber" European Conference on Optical communication, (Copenhagen, Denmark 2002).
  9. A. Boskovic, S.V. Chernikov, J.R. Taylor, L. Grüner-Nielsen, and O.A. Levring "Direct continuous-wave measurement of n2 in various types of telecommunication fibers at 1.55 µm" Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  10. M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten "Symmetry and degeneracy in microstructured optical fibers" Opt. Lett. 26, 488-490 (2001).
    [CrossRef]
  11. S.C.Rashleigh "Wavelength dependence of birefringence in highly birefringent fibers" Opt. Lett. 7, 294-296 (1982).
    [CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Other (5)

K.P. Hansen, J.R. Jensen, C. Jacobsen, H.R. Simonsen, J. Broeng, P.M.W. Skovgaard, A. Petersson, and A. Bjarklev "Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 µm" Conference on Optical Fiber Communication - Post Deadline, (Anaheim, California, USA 2002).

K.P. Hansen, J.R. Folkenberg, A. Petersson, and A. Bjarklev "Properties of Nonlinear Photonic Crystal Fibers for Telecommunication Applications" Conference on Optical Fiber Communication, 694-695 (Atlanta, Georgia, USA 2003).

K.S. Berg, L. Oxenløwe, A. Siahlo, A. Tersigni, A.T. Clausen, C. Peucheret, P. Jeppesen, K.P. Hansen, and J.R. Jensen "80 Gb/s transmission over 80 km and demultiplexing using a highly nonlinear photonic crystal fibre" European Conference on Optical Communication, (Copenhagen, Denmark 2002).

L.K. Oxenløwe, A. Siahlo, K.S. Berg, A. Tersigni, C. Peucheret, A.T. Clausen, K.P. Hansen, and J.R. Jensen "A photonic crystal fibre used as a 160 to 10 Gb/s demultiplexer" OptoElectronics and Communications Conference - Post Deadline (Yokohama, Japan, 2002).

J. Hiroshi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S.-I. Matsushita, H. obioka, S. Namiki, and T. Yagi "Dispersion slope controlled HNL-DSF with high gamma of 25 W-1km-1 and band conversion experiments using this fiber" European Conference on Optical communication, (Copenhagen, Denmark 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(Left) Microscope picture of the microstructured region of the fiber (Λ=1.5 µm). (Middle) The triangular core region comprises an up-doped center element (red) surrounded by three down-doped regions (blue) and three holes. (Right) Near field measured at 1.55 µm on logarithmic scale. The mode field diameter is approximately 3.5 µm.

Fig. 2.
Fig. 2.

The dispersion slope can be tuned while maintaining a fixed zero-dispersion wavelength (simulated data). The relative hole-size is varied from 0.56 to 0.44 and the pitch from 1.24 to 1.61 µm. Insert shows the balance between material and waveguide dispersion for a fiber with zero dispersion slope at 1.55 µm.

Fig. 3.
Fig. 3.

Measured dispersion of a range of fibers with d/Λ=0.5 and pitch in the range 1.34 – 1.47 µm. The choice of pitch determines the dispersion level or zero-dispersion wavelength

Fig. 4.
Fig. 4.

Measured dispersion of four fibers with hole-sizes in the range 0.47 – 0.50 µm and pitch of 1.48 – 1.51 µm. The choice of structural parameters enables tuning of the slope from -3·10-2 to +1·10-2 ps/(km·nm2).

Fig. 5.
Fig. 5.

Dispersion curve of an ultra slope reduced fiber. The dispersion variation is within 1 ps/(km·nm) in the range 1465–1655 nm. The fiber is equivalent in structure to Fiber 3 in Fig. 4.

Fig. 6.
Fig. 6.

Relation between slope and nonlinear coefficient expressed by the relative hole-size. The points indicate the fabricated flat slope fiber shown in Fig. 5.

Metrics