Abstract

The influence of depth dependent dispersion by the main component of biological tissues, water, on the resolution of OCT was studied. Investigations showed that it was possible to eliminate the influence of depth dependent dispersion by water in tissue by choosing a light source with a center wavelength near 1.0 µm. Ultrahigh resolution ophthalmic imaging was performed at this wavelength range with a microstructure fiber light source.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, ???Optical coherence tomography,??? Science 254, 1178-1181(1991).
    [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, ???Optical coherence-domain reflectometry: a new optical evaluation technique,??? Opt. Lett. 12, 158-160 (1987).
    [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, ???In vivo ultrahigh-resolution optical coherence tomography,??? Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, ???Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,??? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  5. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, ???Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,??? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  6. Christoph K. Hitzenberger, Angela Baumgartner, Wolfgang Drexler, and Adolf F. Fercher, ???Dispersion effects in partial coherence interferometry: implications for intraocular ranging,??? J. of Bio. Opt. 4, 144-151 (1999).
    [CrossRef]
  7. J. F. de Boer, C. E. Saxer, and J. S. Nelson, ???Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,??? Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  8. E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, ???Real-time dispersion compensation in scanning interferometry,??? Opt. Lett. 27, 1998-2000 (2002).
    [CrossRef]
  9. B. L. Danielson and C. Y. Boisrobert, ???Absolute optical ranging using low coherence interferometry,??? Appl. Opt. 30, 2975-2979 (1991).
    [CrossRef] [PubMed]
  10. Amelia G. Van Engen, Scott A. Diddams, and Tracy S. Clement, ???Dispersion measurements of water with white-light interferometry,??? Appl. Opt. 37, 5679-5686 (1998).
    [CrossRef]
  11. P. Schiebener, J. Straub, J. M. H. Levelt Sengers and J. S. Gallagher, ???Refractive index of water and steam as function of wavelength, temperature and density,??? J. Phys. Chem. Ref. Data 19, 677-717 (1990).
    [CrossRef]
  12. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, ???Ultrahigh-resolution OCT using broadband continuum generation from a photonic crystal fiber,??? Opt. Lett. 28, 182-184 (2003).
    [CrossRef] [PubMed]
  13. J. H. Chang, H. Ren, W. M. Petroll, H. D. Cavanagh and J. V. Jester, ???The application of in vivo confocal microscopy and tear LDH measurement in assessing corneal response to contact lens and contact lens solutions,??? Cur. Eye Res. 19, 171-181 (1999).
    [CrossRef]

Appl. Opt. (3)

Cur. Eye Res (1)

J. H. Chang, H. Ren, W. M. Petroll, H. D. Cavanagh and J. V. Jester, ???The application of in vivo confocal microscopy and tear LDH measurement in assessing corneal response to contact lens and contact lens solutions,??? Cur. Eye Res. 19, 171-181 (1999).
[CrossRef]

J. of Bio Opt. (1)

Christoph K. Hitzenberger, Angela Baumgartner, Wolfgang Drexler, and Adolf F. Fercher, ???Dispersion effects in partial coherence interferometry: implications for intraocular ranging,??? J. of Bio. Opt. 4, 144-151 (1999).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers and J. S. Gallagher, ???Refractive index of water and steam as function of wavelength, temperature and density,??? J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Opt. Lett. (6)

Science (1)

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, ???Optical coherence tomography,??? Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Chromatic dispersion of water. Triangles: experimental result; solid line: calculated result.

Fig. 2.
Fig. 2.

Broadening effect for different OCT resolutions. K is the ratio of coherence length with and without water dispersion. Dashed line: 800 nm light source; solid line: 1.3 µm light source.

Fig. 3.
Fig. 3.

Broadening of autocorrelation function when light passes through water sample. The light sources are at 940 nm and 1.32 µm.

Fig. 4.
Fig. 4.

Calculated broadening effects for broadband light sources at center wavelengths of 0.8, 1.0, and 1.3 µm, respectively. The bandwidths were chosen such that the longitudinal resolution was maintained at 1.0 µm.

Fig. 5.
Fig. 5.

High resolution ophthalmic imaging. (a) Cornea: image size 0.3×0.2 mm; Ep, epithelium; C.S., corneal stroma. (b) Anterior chamber of eye: image size 3.0×1.74 mm; En, endothelium; A.H., aqueous humor; C, conjunctiva; L, lens; I1, interface between epithelium and stroma; I2, interface between endothelium and A.H.; I3, Interface between A.H. and lens. (c) Interference peaks at line A-A in (b).

Tables (1)

Tables Icon

Table 1. Broadening ratio K at different imaging depth

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ t = σ t 0 { 1 + [ d 2 ϕ ( ω ) d ω 2 ] 2 σ ω 4 } 1 2
K = σ t σ to
D = ω 0 2 2 π z c d 2 ϕ ( ω ) d ω 2

Metrics