Abstract

We study the group-velocity-dispersion properties of a novel type of Bragg fibers. These new structures are cylindrically symmetric microstructured fibers having a high-index core (silica in our case), like in conventional photonic crystal fibers, surrounded by a multilayered cladding, which is formed by a set of alternating layers of silica and a lower refractive-index dielectric. The combination of the unusual geometric dispersion behavior shown by the multilayered structure and the material dispersion corresponding to the silica core allows us to design nearly-constant chromatic dispersion profiles. In this work we focus our attention on flattened dispersion fibers in the 0.8 µm wavelength window and even on ultraflattened dispersion structures about the 1.55 µm point. We include configurations owning positive, negative, and nearly-zero dispersion in both wavelength ranges.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, "Photonic band gap guidance in optical fibers,??? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  2. A. Ferrando, E. Silvestre, J.J. Miret, P. Andrés, and M.V. Andrés, ???Donor and acceptor guided modes in photonic crystal fibers,??? Opt. Lett. 25, 1328-1330 (2000).
    [CrossRef]
  3. P. Yeh, A. Yariv, and E. Marom, ???Theory of Bragg fiber,??? J. Opt. Soc. Am. 68, 1196-1201 (1978).
    [CrossRef]
  4. Y. Xu, G.X. Ouyang, R.K. Lee, and A. Yariv, ???Asymptotic Matrix Theory of Bragg Fibers,??? J. Lightwave Technol. 20, 428-440 (2002).
    [CrossRef]
  5. M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, ???An all-dielectric coaxial waveguide,??? Science 289, 415-419 (2000).
    [CrossRef] [PubMed]
  6. S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engness, M. Soljacic, S.A. Jacobs, J.D. Joannopoulos, and Y. Fink, ???Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,??? Opt. Express 9, 748-779 (2001),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</A>
    [CrossRef] [PubMed]
  7. J. Xu, J. Song, C. Li, and K. Ueda, ???Cylindrically symmetrical hollow fiber,??? Opt. Commun. 182, 343-348 (2000).
    [CrossRef]
  8. A. Argyros, I. Bassett, M. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, and C.M. de Sterke, ???Ring structures in microstructured polymer optical fibres,??? Opt. Express 9, 813-820 (2001),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813 ">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813 </a>
    [CrossRef] [PubMed]
  9. A. Ferrando, E. Silvestre, J.J. Miret, and P. Andrés, ???Nearly zero ultraflattened dispersion in photonic crystal fibers,??? Opt. Lett. 25, pp. 790-792 (2000).
    [CrossRef]
  10. W.H. Reeves, J.C. Knight, P.St.J. Russell, and P.J. Roberts, ???Demonstration of ultra-flattened dispersion in photonic crystal fibers,??? Opt. Express 10, 609-613 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>.
    [CrossRef] [PubMed]
  11. K. Saitoh, M. Koshiba, H. University; T. Hasegawa, and E. Sasaoka, ???Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,??? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>
    [CrossRef] [PubMed]
  12. A. Ferrando, E. Silvestre, P. Andrés, J.J. Miret, and M.V. Andrés, ???Designing the properties of dispersion flattened photonic crystal fibers,??? Opt. Express 9, 687-697 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>
    [CrossRef] [PubMed]
  13. F. Brechet, P. Roy, J. Marcau, and D. Pagnoux, ???Single propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,??? Elec. Lett. 36, 514-515 (2000).
    [CrossRef]
  14. G. Ouyang, Y. Xu, and A. Yariv, ???Comparative study of air-core and coaxial Bragg fibers: singlemode transmission and dispersion characteristics,??? Opt. Express 9, 733-747 (2001),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733</a>
    [CrossRef] [PubMed]
  15. G. Ouyang, Y. Xu, and A. Yariv, ???Theoretical study on dispersion compensation in air-core Bragg fibers,??? Opt. Express 10, 899-908 (2002),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899</a>
    [CrossRef] [PubMed]
  16. E. Silvestre, M.V. Andrés, and P. Andrés, ???Biorthonormal-basis method for the vector description of optical-fiber mode,??? J. Lightwave Technol. 16, 923-928 (1998).
    [CrossRef]
  17. A.W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), p. 248.
  18. D. Davidson, Optical-Fiber Transmission (E.E. Bert Basch, ed., Howard W. Sams & Co, 1987) , pp. 27- 64.

Elec. Lett. (1)

F. Brechet, P. Roy, J. Marcau, and D. Pagnoux, ???Single propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths,??? Elec. Lett. 36, 514-515 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

J. Xu, J. Song, C. Li, and K. Ueda, ???Cylindrically symmetrical hollow fiber,??? Opt. Commun. 182, 343-348 (2000).
[CrossRef]

Opt. Express (7)

A. Argyros, I. Bassett, M. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, and C.M. de Sterke, ???Ring structures in microstructured polymer optical fibres,??? Opt. Express 9, 813-820 (2001),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813 ">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813 </a>
[CrossRef] [PubMed]

S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engness, M. Soljacic, S.A. Jacobs, J.D. Joannopoulos, and Y. Fink, ???Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,??? Opt. Express 9, 748-779 (2001),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</A>
[CrossRef] [PubMed]

G. Ouyang, Y. Xu, and A. Yariv, ???Comparative study of air-core and coaxial Bragg fibers: singlemode transmission and dispersion characteristics,??? Opt. Express 9, 733-747 (2001),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733</a>
[CrossRef] [PubMed]

G. Ouyang, Y. Xu, and A. Yariv, ???Theoretical study on dispersion compensation in air-core Bragg fibers,??? Opt. Express 10, 899-908 (2002),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899</a>
[CrossRef] [PubMed]

W.H. Reeves, J.C. Knight, P.St.J. Russell, and P.J. Roberts, ???Demonstration of ultra-flattened dispersion in photonic crystal fibers,??? Opt. Express 10, 609-613 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>.
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, H. University; T. Hasegawa, and E. Sasaoka, ???Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,??? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, P. Andrés, J.J. Miret, and M.V. Andrés, ???Designing the properties of dispersion flattened photonic crystal fibers,??? Opt. Express 9, 687-697 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>
[CrossRef] [PubMed]

Opt. Lett. (2)

Science (2)

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, "Photonic band gap guidance in optical fibers,??? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, ???An all-dielectric coaxial waveguide,??? Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Other (2)

A.W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), p. 248.

D. Davidson, Optical-Fiber Transmission (E.E. Bert Basch, ed., Howard W. Sams & Co, 1987) , pp. 27- 64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of a high-index-core Bragg fiber.

Fig. 2.
Fig. 2.

Band-gap structure and modal dispersion relation curves for two angular sectors: (a) ν=1 (HE modes), and (b) ν=0 (only TE modes). In both cases, Λ=1.190 µm and a=0.248 µm. Conduction bands are represented by the shaded regions.

Fig. 3.
Fig. 3.

Transverse intensity distribution for: (a) the fundamental guided mode HE11 in Fig. 2, and (b) the first intraband guided mode TE01 in Fig. 2. In both cases, λ=0.8 µm.

Fig. 4.
Fig. 4.

Positive (Λ=1.170 µm and a=0.266 µm), nearly-zero (Λ=1.190 µm and a=0.248 µm), and negative (Λ=1.210 µm and a=0.232 µm) flattened dispersion curves near 0.8 µm.

Fig. 5.
Fig. 5.

Positive (Λ=4.900 µm and a=0.115 µm), nearly-zero (Λ=4.210 µm and a=0.094 µm), and negative (Λ=3.600 µm and a=0.082 µm) ultraflattened dispersion curves near 1.55 µm.

Fig. 6.
Fig. 6.

Dispersion (solid curves) and relative dispersion slope (broken curves), defined as RDS=(dD/dλ)/D, corresponding to three different selections of the structural parameters to achieve zero four-ordered dispersion at 1.55 µm: red curve (Λ=4.710 µm and a=0.090 µm), blue curve (Λ=4.570 µm and a=0.094 µm), and green curve (Λ=4.465 µm and a=0.096 µm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D g ( λ ) = ( λ c ) d 2 n g d λ 2 .
D ( λ ) = ( λ c ) d 2 n d λ 2 ,

Metrics