Abstract

A novel method for detection of noble-metal nanoparticles by their nonlinear optical properties is presented and applied for specific labeling of cellular organelles. When illuminated by laser light in resonance with their plasmon frequency these nanoparticles generate an enhanced multiphoton signal. This enhanced signal is measured to obtain a depth-resolved image in a laser scanning microscope setup. Plasmon-resonance images of both live and fixed cells, showing specific labeling of cellular organelles and membranes, either by two-photon autofluorescence or by third-harmonic generation, are presented.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy

Chieh-Feng Chang, Chao-Yu Chen, Fu-Hsiung Chang, Shih-Peng Tai, Cheng-Ying Chen, Che-Hang Yu, Yi-Bing Tseng, Tsung-Han Tsai, I-Shuo Liu, Wei-Fang Su , and Chi-Kuang Sun
Opt. Express 16(13) 9534-9548 (2008)

Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry

Chun-Chieh Wang, Chia-Wei Lee, Chia-Yun Huang, Jiunn-Yuan Lin, Pei-Kuen Wei, and Chau-Hwang Lee
Appl. Opt. 47(13) 2458-2464 (2008)

Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

Stefan Kalies, Lara Gentemann, Markus Schomaker, Dag Heinemann, Tammo Ripken, and Heiko Meyer
Biomed. Opt. Express 5(8) 2686-2696 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016 (1998).
    [Crossref] [PubMed]
  2. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
    [Crossref]
  3. S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
    [Crossref]
  4. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [Crossref] [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
    [Crossref] [PubMed]
  6. J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
    [Crossref]
  7. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848 (1996).
    [Crossref] [PubMed]
  8. B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
    [Crossref]
  9. G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
    [Crossref]
  10. W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
    [Crossref] [PubMed]
  11. S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
    [Crossref] [PubMed]
  12. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169 (1999).
    [Crossref] [PubMed]
  13. M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
    [Crossref] [PubMed]
  14. A. Zumbusch, G.R. Holtom, and X.S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142 (1999).
    [Crossref]
  15. S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
    [Crossref] [PubMed]
  16. G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
    [Crossref] [PubMed]
  17. K. Kneippet al., “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spec. 56, 150 (2002).
    [Crossref]
  18. B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
    [Crossref]
  19. E.J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spec. 24, 775 (1993).
    [Crossref]
  20. M. Quinten, “Local fields close to the surface of nanoparticles and aggregates of nanoparticles,” Appl. Phys. B 73, 245 (2001).
    [Crossref]
  21. D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
    [Crossref]
  22. B. Alberts et al., Molecular Biology of The Cell (Garland Publishing Inc., New York, 1994).
  23. E. Skutelsky and J. Roth, “Cationic colloidal gold - a new probe for the detection of anionic cell surface sites by electron microscopy,” J. Histochemistry 34, 693 (1986).
  24. M.S. Bush and G. Allt, “Blood nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina,” Brain Res. 535, 181 (1990).
    [Crossref] [PubMed]
  25. Concanavalin A as a Tool, eds. H. Bittiges and H.P. Schnebli, (London, 1976).
  26. R.M. Guasch, C. Guerri, and J.-E. O’Connor, “Study of surface carbohydrates on isolated golgi subfractions by fluorescent-lectin binding and flow cytometry,” Cytometry 19, 112 (1995); R.M. Guasch, C. Guerri, J.-E. O’Connor, “Flow cytometric analysis of concanavalin A binding to isolate Golgi fractions from rat liver,” Exp. Cell Res. 207, 136 (1993).
    [Crossref] [PubMed]
  27. I. Virtanen, P. Ekblom, and P. Laurila, “Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells,” J. Cell Biol. 85, 429 (1980).
    [Crossref] [PubMed]

2003 (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

2002 (3)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

K. Kneippet al., “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spec. 56, 150 (2002).
[Crossref]

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

2001 (1)

M. Quinten, “Local fields close to the surface of nanoparticles and aggregates of nanoparticles,” Appl. Phys. B 73, 245 (2001).
[Crossref]

1999 (5)

G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[Crossref] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169 (1999).
[Crossref] [PubMed]

A. Zumbusch, G.R. Holtom, and X.S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
[Crossref]

B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
[Crossref]

1998 (3)

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016 (1998).
[Crossref] [PubMed]

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
[Crossref] [PubMed]

1997 (2)

S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[Crossref] [PubMed]

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

1996 (2)

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848 (1996).
[Crossref] [PubMed]

1995 (1)

R.M. Guasch, C. Guerri, and J.-E. O’Connor, “Study of surface carbohydrates on isolated golgi subfractions by fluorescent-lectin binding and flow cytometry,” Cytometry 19, 112 (1995); R.M. Guasch, C. Guerri, J.-E. O’Connor, “Flow cytometric analysis of concanavalin A binding to isolate Golgi fractions from rat liver,” Exp. Cell Res. 207, 136 (1993).
[Crossref] [PubMed]

1993 (1)

E.J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spec. 24, 775 (1993).
[Crossref]

1990 (2)

M.S. Bush and G. Allt, “Blood nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina,” Brain Res. 535, 181 (1990).
[Crossref] [PubMed]

W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
[Crossref] [PubMed]

1988 (1)

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

1986 (1)

E. Skutelsky and J. Roth, “Cationic colloidal gold - a new probe for the detection of anionic cell surface sites by electron microscopy,” J. Histochemistry 34, 693 (1986).

1981 (1)

B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
[Crossref]

1980 (1)

I. Virtanen, P. Ekblom, and P. Laurila, “Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells,” J. Cell Biol. 85, 429 (1980).
[Crossref] [PubMed]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Alberts, B.

B. Alberts et al., Molecular Biology of The Cell (Garland Publishing Inc., New York, 1994).

Alivisatos, A. P.

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

Allt, G.

M.S. Bush and G. Allt, “Blood nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina,” Brain Res. 535, 181 (1990).
[Crossref] [PubMed]

Aussenegg, F.R.

B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
[Crossref]

Averitt, R.D.

S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
[Crossref]

Barber, P.W.

B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
[Crossref]

Bouevitch, O.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Brakenhoff, G.J.

M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
[Crossref] [PubMed]

Bruchez Jr., M.

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Bush, M.S.

M.S. Bush and G. Allt, “Blood nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina,” Brain Res. 535, 181 (1990).
[Crossref] [PubMed]

Carron, K.T.

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

Chan, W. C. W.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016 (1998).
[Crossref] [PubMed]

Chang, R.K.

B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
[Crossref]

de Abajo, F. J. Garcia

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Denk, W.

W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
[Crossref] [PubMed]

Ekblom, P.

I. Virtanen, P. Ekblom, and P. Laurila, “Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells,” J. Cell Biol. 85, 429 (1980).
[Crossref] [PubMed]

Emory, S.R.

S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[Crossref] [PubMed]

Engert, C.

E.J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spec. 24, 775 (1993).
[Crossref]

Gin, P.

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

Golab, J.T.

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

Guasch, R.M.

R.M. Guasch, C. Guerri, and J.-E. O’Connor, “Study of surface carbohydrates on isolated golgi subfractions by fluorescent-lectin binding and flow cytometry,” Cytometry 19, 112 (1995); R.M. Guasch, C. Guerri, J.-E. O’Connor, “Flow cytometric analysis of concanavalin A binding to isolate Golgi fractions from rat liver,” Exp. Cell Res. 207, 136 (1993).
[Crossref] [PubMed]

Guerri, C.

R.M. Guasch, C. Guerri, and J.-E. O’Connor, “Study of surface carbohydrates on isolated golgi subfractions by fluorescent-lectin binding and flow cytometry,” Cytometry 19, 112 (1995); R.M. Guasch, C. Guerri, J.-E. O’Connor, “Flow cytometric analysis of concanavalin A binding to isolate Golgi fractions from rat liver,” Exp. Cell Res. 207, 136 (1993).
[Crossref] [PubMed]

Halas, N.J.

S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
[Crossref]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Holtom, G.R.

A. Zumbusch, G.R. Holtom, and X.S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Kall, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Kano, H.

Kawata, S.

Kiefer, W.

E.J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spec. 24, 775 (1993).
[Crossref]

Kneipp, K.

K. Kneippet al., “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spec. 56, 150 (2002).
[Crossref]

Korkotian, E.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

Krenn, J.R.

B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
[Crossref]

Lamprecht, B.

B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
[Crossref]

Laurila, P.

I. Virtanen, P. Ekblom, and P. Laurila, “Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells,” J. Cell Biol. 85, 429 (1980).
[Crossref] [PubMed]

Leitner, A.

B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
[Crossref]

Lewis, A.

G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[Crossref] [PubMed]

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Liang, E.J.

E.J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spec. 24, 775 (1993).
[Crossref]

Linial, M.

G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[Crossref] [PubMed]

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Loew, L.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Loew, L.M.

G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[Crossref] [PubMed]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Maiti, S.

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

Messinger, B. J.

B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
[Crossref]

Moronne, M.

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

Muller, M.

M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
[Crossref] [PubMed]

Nie, S.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016 (1998).
[Crossref] [PubMed]

S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[Crossref] [PubMed]

O’Connor, J.-E.

R.M. Guasch, C. Guerri, and J.-E. O’Connor, “Study of surface carbohydrates on isolated golgi subfractions by fluorescent-lectin binding and flow cytometry,” Cytometry 19, 112 (1995); R.M. Guasch, C. Guerri, J.-E. O’Connor, “Flow cytometric analysis of concanavalin A binding to isolate Golgi fractions from rat liver,” Exp. Cell Res. 207, 136 (1993).
[Crossref] [PubMed]

Oldenburg, S.J.

S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
[Crossref]

Oron, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Parnas, D.

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Peleg, G.

G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[Crossref] [PubMed]

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Quinten, M.

M. Quinten, “Local fields close to the surface of nanoparticles and aggregates of nanoparticles,” Appl. Phys. B 73, 245 (2001).
[Crossref]

Roth, J.

E. Skutelsky and J. Roth, “Cationic colloidal gold - a new probe for the detection of anionic cell surface sites by electron microscopy,” J. Histochemistry 34, 693 (1986).

Schatz, G.C.

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

Segal, M.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

Shear, J.B.

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

Silberberg, Y.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169 (1999).
[Crossref] [PubMed]

Skutelsky, E.

E. Skutelsky and J. Roth, “Cationic colloidal gold - a new probe for the detection of anionic cell surface sites by electron microscopy,” J. Histochemistry 34, 693 (1986).

Sprague, J.R.

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

Squier, J.

M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
[Crossref] [PubMed]

Strickler, J.H.

W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
[Crossref] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Van Duyne, R.P.

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

Virtanen, I.

I. Virtanen, P. Ekblom, and P. Laurila, “Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells,” J. Cell Biol. 85, 429 (1980).
[Crossref] [PubMed]

von Raben, K. Ulrich

B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
[Crossref]

Webb, W.W.

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
[Crossref] [PubMed]

Weiss, S.

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

Westcott, S.L.

S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
[Crossref]

Williams, R.M.

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

Wilson, K.R.

M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
[Crossref] [PubMed]

Xie, X.S.

A. Zumbusch, G.R. Holtom, and X.S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Yelin, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169 (1999).
[Crossref] [PubMed]

Zipfel, W.R.

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G.R. Holtom, and X.S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

Appl. Phys. B (2)

M. Quinten, “Local fields close to the surface of nanoparticles and aggregates of nanoparticles,” Appl. Phys. B 73, 245 (2001).
[Crossref]

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a Ti:Sapphire laser,” Appl. Phys. B 74, s97 (2002).
[Crossref]

Appl. Spec. (1)

K. Kneippet al., “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spec. 56, 150 (2002).
[Crossref]

Bioimaging (1)

G. Peleg, A. Lewis, O. Bouevitch, L. Loew, D. Parnas, and M. Linial, “Gigantic optical non-linearities from nanopartical-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems,” Bioimaging 4, 215 (1996).
[Crossref]

Brain Res. (1)

M.S. Bush and G. Allt, “Blood nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina,” Brain Res. 535, 181 (1990).
[Crossref] [PubMed]

Cytometry (1)

R.M. Guasch, C. Guerri, and J.-E. O’Connor, “Study of surface carbohydrates on isolated golgi subfractions by fluorescent-lectin binding and flow cytometry,” Cytometry 19, 112 (1995); R.M. Guasch, C. Guerri, J.-E. O’Connor, “Flow cytometric analysis of concanavalin A binding to isolate Golgi fractions from rat liver,” Exp. Cell Res. 207, 136 (1993).
[Crossref] [PubMed]

J. Cell Biol. (1)

I. Virtanen, P. Ekblom, and P. Laurila, “Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells,” J. Cell Biol. 85, 429 (1980).
[Crossref] [PubMed]

J. Chem. Phys. (2)

J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, and R.P. Van Duyne,“A Surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory,” J. Chem. Phys. 888, 7942 (1988).
[Crossref]

S.J. Oldenburg, S.L. Westcott, R.D. Averitt, and N.J. Halas, “Infrared extinction properties of gold nanoshells,” J. Chem. Phys. 111, 4729 (1999).
[Crossref]

J. Histochemistry (1)

E. Skutelsky and J. Roth, “Cationic colloidal gold - a new probe for the detection of anionic cell surface sites by electron microscopy,” J. Histochemistry 34, 693 (1986).

J. Microsc (1)

M. Muller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc 191, 266 (1998).
[Crossref] [PubMed]

J. Raman Spec. (1)

E.J. Liang, C. Engert, and W. Kiefer, “Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-infrared region,” J. Raman Spec. 24, 775 (1993).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

B. J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, “Local fields at the surface of noble metal microspheres,” Phys. Rev. B 24, 649 (1981).
[Crossref]

Phys. Rev. Lett. (3)

A. Zumbusch, G.R. Holtom, and X.S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142 (1999).
[Crossref]

B. Lamprecht, J.R. Krenn, A. Leitner, and F.R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett. 83, 4421 (1999).
[Crossref]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. Peleg, A. Lewis, M. Linial, and L.M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[Crossref] [PubMed]

Science (6)

S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[Crossref] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016 (1998).
[Crossref] [PubMed]

M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013 (1998).
[Crossref]

W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
[Crossref] [PubMed]

S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, and W.W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530 (1997).
[Crossref] [PubMed]

Other (2)

B. Alberts et al., Molecular Biology of The Cell (Garland Publishing Inc., New York, 1994).

Concanavalin A as a Tool, eds. H. Bittiges and H.P. Schnebli, (London, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Plasmon-resonance TPAF images of CHO cells incubated with (a) 10nm cationic gold. (b) 40nm Concanavalin A gold. (c) two cells which were submitted to the same treatments performed in the positive experiments (a and b), but no gold was added to the growing medium. The strong TPAF spots in a and b are attributed to plasmon-resonance with the laser frequency where nanoparticles are aggregated.

Fig. 2.
Fig. 2.

Plasmon-resonance TPAF image of a live CHO cell incubated with 10nm cationic gold, superimposed on a simple transmission image of the cell. The transmission image is blue, while the TPAF signal goes from red (weak) to yellow (strong).

Fig. 3.
Fig. 3.

(a) THG image of a fixed NIH3T3 cell. While the nucleus appears dark, numerous bright spots are observed in the cell volume. (b) THG image of a NIH3T3 cell, in which the nucleus membrane was labelled by 10nm gold nanoparticles followed by silver enhancement.

Fig. 4.
Fig. 4.

Four THG sections of a NIH3T3 epithelial cell whose membrane was labelled by 10nm gold nanoparticles, followed by silver enhancement. Bright areas denote strong third-harmonic signal. The top of the cell is shown on the top left corner, while the bottom of the cell is shown on the bottom right corner. The spacing between sections is approximately 3µm. The average illumination power is of the order of 1mW. The cell shape, in the form of a triangular pyramid is clearly evident. The inside of the cell, where there are no nanoparticles, is completely dark.

Metrics