Abstract

Silica photonic crystal fiber (PCF) is a new type of fiber that has an array of microscopic air holes running along its length. Splicing PCF to standard single-mode fiber (SMF) is a challenging task, but it is also important because of the potential broad applications. Proper splicing of SMF to PCF is imperative in order to avoid collapsing of the PCF on the air holes; however, the two types of fiber require different laser powers for melting. A laser splicing system is developed to demonstrate its effectiveness at splicing between the large-mode-area PCF and SMF with low splice loss.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. D. -L. Kim, M. Tomozawa, S. Dubois, and G. Orcel, “Fictive temperature measurement of single-mode optical-fiber core and cladding,” J. Lightwave Technol. 19, 1155–1158 (2001).
    [CrossRef]
  3. A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
    [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  5. T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).
  6. W. Zheng, “Real time control of arc fusion for optical fiber splicing,” J. Lightwave Technol. 11 (1993).
    [CrossRef]
  7. S. A. Cooper and R. W. Erskine Jr., “Practical guidelines for mass splicing,” National Fiber Optic Engineers Conference, Technical Proceedings, 2001.
  8. A. K. Das and S. Bhattacharyya, “Low-loss fusion splices of optical fibers,” J. Lightwave Technol. LT-3, (1985).
  9. A. Ide, M. Tachikura, and Y. Nomura, “Fiber misalignment method by the reflected light from fibers,” J. Lightwave Technol. 8 (1990).
    [CrossRef]
  10. C. R. Kurkjian, J. T. Krause, and M. J. Mathewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7 (1989).
    [CrossRef]
  11. M. Tachikura and T. Haibara, “Devitrification effect on optical fiber strength reduction by fusion splicing,” J. Lightwave Technol. LT-3 (1985).
  12. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, New York, 1995).
  13. M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
    [CrossRef]
  14. S. Pradihan, A. Mazloom, J. Arbulich, and K. Srihari, “Minimization of splice loss between a single mode fiber and an erbium doped fiber,” Electronic Components and Technology Conference, 2002.
  15. K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).
  16. P. J. Bennett, T. Monro, and D. J. Richchardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett. 24, 1203–1205 (1999).
    [CrossRef]
  17. J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13 (2001).
    [CrossRef]

2001 (2)

1999 (1)

1997 (1)

1996 (1)

1993 (1)

W. Zheng, “Real time control of arc fusion for optical fiber splicing,” J. Lightwave Technol. 11 (1993).
[CrossRef]

1990 (2)

A. Ide, M. Tachikura, and Y. Nomura, “Fiber misalignment method by the reflected light from fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

1989 (2)

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
[CrossRef]

C. R. Kurkjian, J. T. Krause, and M. J. Mathewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7 (1989).
[CrossRef]

1985 (2)

M. Tachikura and T. Haibara, “Devitrification effect on optical fiber strength reduction by fusion splicing,” J. Lightwave Technol. LT-3 (1985).

A. K. Das and S. Bhattacharyya, “Low-loss fusion splices of optical fibers,” J. Lightwave Technol. LT-3, (1985).

Arbulich, J.

S. Pradihan, A. Mazloom, J. Arbulich, and K. Srihari, “Minimization of splice loss between a single mode fiber and an erbium doped fiber,” Electronic Components and Technology Conference, 2002.

Atkin, D. M.

Baldis, H. A.

K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).

Bennett, P. J.

Bhattacharyya, S.

A. K. Das and S. Bhattacharyya, “Low-loss fusion splices of optical fibers,” J. Lightwave Technol. LT-3, (1985).

Birks, T. A.

Bosselaar, L.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Bredol, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Cooper, S. A.

S. A. Cooper and R. W. Erskine Jr., “Practical guidelines for mass splicing,” National Fiber Optic Engineers Conference, Technical Proceedings, 2001.

Das, A. K.

A. K. Das and S. Bhattacharyya, “Low-loss fusion splices of optical fibers,” J. Lightwave Technol. LT-3, (1985).

Dubois, S.

Erskine Jr., R. W.

S. A. Cooper and R. W. Erskine Jr., “Practical guidelines for mass splicing,” National Fiber Optic Engineers Conference, Technical Proceedings, 2001.

Haibara, T.

M. Tachikura and T. Haibara, “Devitrification effect on optical fiber strength reduction by fusion splicing,” J. Lightwave Technol. LT-3 (1985).

Hutjens, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Ide, A.

A. Ide, M. Tachikura, and Y. Nomura, “Fiber misalignment method by the reflected light from fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Ishikura, A.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Kato, T.

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

Kato, Y.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Kaye, G. W. C.

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, New York, 1995).

Kim, D. -L.

Knight, J. C.

Krause, J. T.

C. R. Kurkjian, J. T. Krause, and M. J. Mathewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Kurkjian, C. R.

C. R. Kurkjian, J. T. Krause, and M. J. Mathewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Laby, T. H.

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, New York, 1995).

Leers, D.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Lizier, J. T.

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13 (2001).
[CrossRef]

Mathewson, M. J.

C. R. Kurkjian, J. T. Krause, and M. J. Mathewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Mazloom, A.

S. Pradihan, A. Mazloom, J. Arbulich, and K. Srihari, “Minimization of splice loss between a single mode fiber and an erbium doped fiber,” Electronic Components and Technology Conference, 2002.

Mima, K.

K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).

Miyauchi, M.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Monro, T.

Nishiguchi, A.

K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).

Nomura, Y.

A. Ide, M. Tachikura, and Y. Nomura, “Fiber misalignment method by the reflected light from fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Onodera, T.

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

Ooyanagi, T.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
[CrossRef]

Orcel, G.

Osato, Y.

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

Pradihan, S.

S. Pradihan, A. Mazloom, J. Arbulich, and K. Srihari, “Minimization of splice loss between a single mode fiber and an erbium doped fiber,” Electronic Components and Technology Conference, 2002.

Richchardson, D. J.

Russell, P. St. J.

Srihari, K.

S. Pradihan, A. Mazloom, J. Arbulich, and K. Srihari, “Minimization of splice loss between a single mode fiber and an erbium doped fiber,” Electronic Components and Technology Conference, 2002.

Suzuki, I.

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

Tachikura, M.

A. Ide, M. Tachikura, and Y. Nomura, “Fiber misalignment method by the reflected light from fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

M. Tachikura and T. Haibara, “Devitrification effect on optical fiber strength reduction by fusion splicing,” J. Lightwave Technol. LT-3 (1985).

Takabe, H.

K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).

Tomozawa, M.

Town, G. E.

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13 (2001).
[CrossRef]

Watanabe, O.

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

Yamada, T.

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

Yamanaka, C.

K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).

Zheng, W.

W. Zheng, “Real time control of arc fusion for optical fiber splicing,” J. Lightwave Technol. 11 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13 (2001).
[CrossRef]

J. Lightwave Technol. (8)

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Miyauchi, “Loss factors analysis for single mode fiber splicing without core axis alignment,” J. Lightwave Technol. 7 (1989).
[CrossRef]

D. -L. Kim, M. Tomozawa, S. Dubois, and G. Orcel, “Fictive temperature measurement of single-mode optical-fiber core and cladding,” J. Lightwave Technol. 19, 1155–1158 (2001).
[CrossRef]

A. K. Das and S. Bhattacharyya, “Low-loss fusion splices of optical fibers,” J. Lightwave Technol. LT-3, (1985).

A. Ide, M. Tachikura, and Y. Nomura, “Fiber misalignment method by the reflected light from fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

C. R. Kurkjian, J. T. Krause, and M. J. Mathewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7 (1989).
[CrossRef]

M. Tachikura and T. Haibara, “Devitrification effect on optical fiber strength reduction by fusion splicing,” J. Lightwave Technol. LT-3 (1985).

W. Zheng, “Real time control of arc fusion for optical fiber splicing,” J. Lightwave Technol. 11 (1993).
[CrossRef]

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8 (1990).
[CrossRef]

Opt. Lett. (3)

Other (5)

T. Onodera, I. Suzuki, T. Yamada, Y. Osato, O. Watanabe, and T. Kato, “The development of an optical fiber splicer using a profile alignment system,” Fujikura Tech. Rev. (1987).

S. Pradihan, A. Mazloom, J. Arbulich, and K. Srihari, “Minimization of splice loss between a single mode fiber and an erbium doped fiber,” Electronic Components and Technology Conference, 2002.

K. Mima, H. A. Baldis, A. Nishiguchi, H. Takabe, and C. Yamanaka, Laser Plasma Theory and Simulation (Harwood Academic, Chur, Switzerland, 1994).

S. A. Cooper and R. W. Erskine Jr., “Practical guidelines for mass splicing,” National Fiber Optic Engineers Conference, Technical Proceedings, 2001.

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Condensation is trapped inside the air holes of the PCF (left image) with profile index ofd/Λ=0.682 and period Λ=12.22 µm. The PCF used has a diameter of 100 µm, and the size of the air holes is relatively larger than that of the PCF as shown in Fig. 2. When the electric arc is applied, the condensation expands and escapes out from the joint. The volume expansion of PCF is observed (right image).

Fig. 2.
Fig. 2.

Complete laser splicing system setup with control by personal computer.

Fig. 3.
Fig. 3.

Complete splicing process starting from fiber end-face stuffing to final fiber fusion.

Fig. 4.
Fig. 4.

Left-hand image, cross section of PCF; its index profile is d/Λ=0.388 and Λ=8.5 µm. Right-hand image, PCF-to-SMF splice joint. Prior to splicing, condensation is first removed by laser, and a careful control of the laser power and exposure time limit the collapse of air holes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V eff = 2 π Λ ( n 0 2 n eff 2 ) 1 2 ,
η int = 10 log [ ( 2 ω 1 ω 2 ω 1 2 + ω 2 2 ) 2 × exp ( 2 d 2 ω 1 2 + ω 2 2 ) ] ,
ε = 2.28 Z 0.093 exp ( 2400 RT ) .
K Si = 0.78 0.054 exp ( T + 379 354 ) + 0.165 exp ( T + 379 405 ) ,
K air 4.675 × 10 4 T .

Metrics