Abstract

The properties of the multi-quadratic-soliton generation process have been investigated both theoretically and experimentally near and on phase-match in non-critically-phase-matched, periodically poled, potassium titanyl phosphate (PPKTP). It was found that multi-soliton generation occurs primarily due to asymmetry in the input beam and at phase-matching. The number of solitons generated depended on the input intensity in a non-trivial way.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu.N. Karamzin and A.P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Phys 68, 834 (1975) (Sov. Phys.-JETP 41, 414 (1976).
  2. W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
    [CrossRef] [PubMed]
  3. R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in plannar waveguides,” Phys. Rev. E 53, 1138 (1996).
    [CrossRef]
  4. P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
    [CrossRef]
  5. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631 (1999).
    [CrossRef]
  6. B. Bourliaguet, V. Couderc, A. Barthelemy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett. 24, 1410 (1999).
    [CrossRef]
  7. R. Malendevich, L. Jankovic, S. Polyakov, R. Fuerst, G. I. Stegeman, Ch. Bosshard, and P. Gunter, “Two-Dimensional Type I Quadratic Spatial Solitons in KNbO3 Near Non-Critical Phase-Matching,” Opt. Lett. 27, 631 (2002).
    [CrossRef]
  8. H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
    [CrossRef] [PubMed]
  9. For an overview, see L. Torner and G.I. Stegeman, “Multicolor Solitons,” Opt. Photon. News 12, (2), 36 (2001).
    [CrossRef]
  10. For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
    [CrossRef]
  11. S. Polyakov, R. Malendevich, L. Jankovic, G. Stegeman, Ch. Bosshard, and P. Gunter, “Effects of Anisotropic Diffraction on Quadratic Multi Soliton Excitation in Non-critically Phase-matched Crystals,” Opt. Lett. 27, 1049 (2002).
    [CrossRef]
  12. S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
    [CrossRef]
  13. S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
    [CrossRef]
  14. M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press
  15. A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598 (1997).
    [CrossRef]
  16. G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
    [CrossRef]
  17. S. V. Polyakov and G. I. Stegeman, “Quadratic Solitons in Anisotropic Media: Variational Approach,” Phys. Rev. E 66, 046622-1 (2002).
    [CrossRef]
  18. A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670 (1995); L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruelas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149 (1995).
    [CrossRef] [PubMed]
  19. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).
  20. G. Assanto and G. Stegeman, “The Simple Physics of Quadratic Spatial Solitons,” Opt. Express 10, 388 (2002).
    [CrossRef] [PubMed]
  21. A. D. Boardman, K. Xie, and A. Sangarpaul, “Stability of scalar spatial solitons in cascadable nonlinear media,” Phys. Rev. A 52, 4099 (1995).
    [CrossRef] [PubMed]

2003 (2)

H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
[CrossRef] [PubMed]

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

2002 (6)

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
[CrossRef]

S. Polyakov, R. Malendevich, L. Jankovic, G. Stegeman, Ch. Bosshard, and P. Gunter, “Effects of Anisotropic Diffraction on Quadratic Multi Soliton Excitation in Non-critically Phase-matched Crystals,” Opt. Lett. 27, 1049 (2002).
[CrossRef]

R. Malendevich, L. Jankovic, S. Polyakov, R. Fuerst, G. I. Stegeman, Ch. Bosshard, and P. Gunter, “Two-Dimensional Type I Quadratic Spatial Solitons in KNbO3 Near Non-Critical Phase-Matching,” Opt. Lett. 27, 631 (2002).
[CrossRef]

S. V. Polyakov and G. I. Stegeman, “Quadratic Solitons in Anisotropic Media: Variational Approach,” Phys. Rev. E 66, 046622-1 (2002).
[CrossRef]

G. Assanto and G. Stegeman, “The Simple Physics of Quadratic Spatial Solitons,” Opt. Express 10, 388 (2002).
[CrossRef] [PubMed]

2001 (1)

For an overview, see L. Torner and G.I. Stegeman, “Multicolor Solitons,” Opt. Photon. News 12, (2), 36 (2001).
[CrossRef]

1999 (2)

1998 (2)

P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

1997 (1)

1996 (1)

R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in plannar waveguides,” Phys. Rev. E 53, 1138 (1996).
[CrossRef]

1995 (3)

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670 (1995); L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruelas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149 (1995).
[CrossRef] [PubMed]

A. D. Boardman, K. Xie, and A. Sangarpaul, “Stability of scalar spatial solitons in cascadable nonlinear media,” Phys. Rev. A 52, 4099 (1995).
[CrossRef] [PubMed]

1975 (1)

Yu.N. Karamzin and A.P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Phys 68, 834 (1975) (Sov. Phys.-JETP 41, 414 (1976).

Adreoni, A.

P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

Angelis, C. De

Ankiewicz, A.

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

Artigas, D.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

Assanto, G.

Baek, Y.

R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in plannar waveguides,” Phys. Rev. E 53, 1138 (1996).
[CrossRef]

Barthelemy, A.

Barthélémy, A.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

Boardman, A. D.

A. D. Boardman, K. Xie, and A. Sangarpaul, “Stability of scalar spatial solitons in cascadable nonlinear media,” Phys. Rev. A 52, 4099 (1995).
[CrossRef] [PubMed]

Bosshard, Ch.

Bourliaguet, B.

Buryak, A. V.

A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670 (1995); L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruelas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149 (1995).
[CrossRef] [PubMed]

Buryak, A.V.

For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
[CrossRef]

Carrasco, S.

H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
[CrossRef] [PubMed]

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press

Chianglia, W.

P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Couderc, V.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

B. Bourliaguet, V. Couderc, A. Barthelemy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett. 24, 1410 (1999).
[CrossRef]

Eger, D.

H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
[CrossRef] [PubMed]

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598 (1997).
[CrossRef]

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press

Englander, A.

Fuerst, R.

Garb, Kh.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

Gunter, P.

Hagan, D J.

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Hanna, D. C.

Jankovic, L.

Karamzin, Yu.N.

Yu.N. Karamzin and A.P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Phys 68, 834 (1975) (Sov. Phys.-JETP 41, 414 (1976).

Katz, M.

H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
[CrossRef] [PubMed]

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598 (1997).
[CrossRef]

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press

Kim, H.

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
[CrossRef] [PubMed]

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press

Kivshar, Y. S.

A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670 (1995); L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruelas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149 (1995).
[CrossRef] [PubMed]

Lavi, R.

Lebiush, E.

Liu, X.

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

López-Lago, E.

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

Malendevich, R.

Menyuk, C. R.

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Oron, M.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598 (1997).
[CrossRef]

Polyakov, S.

Polyakov, S. V.

S. V. Polyakov and G. I. Stegeman, “Quadratic Solitons in Anisotropic Media: Variational Approach,” Phys. Rev. E 66, 046622-1 (2002).
[CrossRef]

Qian, L. J.

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

Rosenman, G.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598 (1997).
[CrossRef]

Ross, G. W.

Sangarpaul, A.

A. D. Boardman, K. Xie, and A. Sangarpaul, “Stability of scalar spatial solitons in cascadable nonlinear media,” Phys. Rev. A 52, 4099 (1995).
[CrossRef] [PubMed]

Schiek, R.

R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in plannar waveguides,” Phys. Rev. E 53, 1138 (1996).
[CrossRef]

Skliar, A.

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

A. Englander, R. Lavi, M. Katz, M. Oron, D. Eger, E. Lebiush, G. Rosenman, and A. Skliar, “Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP,” Opt. Lett. 22, 1598 (1997).
[CrossRef]

Skryabin, D.

For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
[CrossRef]

Smith, P. G. R.

Steblina, V. V.

A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670 (1995); L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruelas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149 (1995).
[CrossRef] [PubMed]

Stegeman, G.

Stegeman, G. I.

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

R. Malendevich, L. Jankovic, S. Polyakov, R. Fuerst, G. I. Stegeman, Ch. Bosshard, and P. Gunter, “Two-Dimensional Type I Quadratic Spatial Solitons in KNbO3 Near Non-Critical Phase-Matching,” Opt. Lett. 27, 631 (2002).
[CrossRef]

S. V. Polyakov and G. I. Stegeman, “Quadratic Solitons in Anisotropic Media: Variational Approach,” Phys. Rev. E 66, 046622-1 (2002).
[CrossRef]

R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in plannar waveguides,” Phys. Rev. E 53, 1138 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Stegeman, G.I.

For an overview, see L. Torner and G.I. Stegeman, “Multicolor Solitons,” Opt. Photon. News 12, (2), 36 (2001).
[CrossRef]

Sukhorukov, A.P.

Yu.N. Karamzin and A.P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Phys 68, 834 (1975) (Sov. Phys.-JETP 41, 414 (1976).

Torner, L.

H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, “Quadratic Spatial Solitons in Periodically Poled KTiOPO4,” Opt. Lett. 28, 640 (2003).
[CrossRef] [PubMed]

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

For an overview, see L. Torner and G.I. Stegeman, “Multicolor Solitons,” Opt. Photon. News 12, (2), 36 (2001).
[CrossRef]

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press

Torres, J. P.

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

Torruellas, W. E.

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Trapani, P. Di

For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
[CrossRef]

P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

Trillo, S.

For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
[CrossRef]

Valiulis, G.

P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

VanStryland, E. W.

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Wang, Z.

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Wise, F. W.

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

Xie, K.

A. D. Boardman, K. Xie, and A. Sangarpaul, “Stability of scalar spatial solitons in cascadable nonlinear media,” Phys. Rev. A 52, 4099 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 865 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Elect. (1)

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. López-Lago, V. Couderc, and A. Barthélémy, “Quadratic Solitons: Existence versus Excitation,” IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Photon. News (1)

For an overview, see L. Torner and G.I. Stegeman, “Multicolor Solitons,” Opt. Photon. News 12, (2), 36 (2001).
[CrossRef]

Phys Rep. (1)

For a comprehensive review, see A.V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys Rep. 370, 63 (2002).
[CrossRef]

Phys. Rev. A (2)

A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670 (1995); L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruelas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149 (1995).
[CrossRef] [PubMed]

A. D. Boardman, K. Xie, and A. Sangarpaul, “Stability of scalar spatial solitons in cascadable nonlinear media,” Phys. Rev. A 52, 4099 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (3)

S. V. Polyakov and G. I. Stegeman, “Quadratic Solitons in Anisotropic Media: Variational Approach,” Phys. Rev. E 66, 046622-1 (2002).
[CrossRef]

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, “Observation of multiple soliton generation mediated by amplification of asymmetries,” Phys. Rev. E 67, 046616 (2003).
[CrossRef]

R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in plannar waveguides,” Phys. Rev. E 53, 1138 (1996).
[CrossRef]

Phys. Rev. Lett. (3)

P. Di Trapani, G. Valiulis, W. Chianglia, and A. Adreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265 (1998).
[CrossRef]

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Zh. Eksp. Teor. Phys (1)

Yu.N. Karamzin and A.P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Phys 68, 834 (1975) (Sov. Phys.-JETP 41, 414 (1976).

Other (2)

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, “Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,” J. Appl. Phys., in press

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997).

Supplementary Material (5)

» Media 1: GIF (456 KB)     
» Media 2: GIF (173 KB)     
» Media 3: GIF (1364 KB)     
» Media 4: GIF (404 KB)     
» Media 5: GIF (531 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup. The prism (inset) can be moved into the path of the beam to alter the direction of the beam asymmetry (but not its shape).

Fig. 2.
Fig. 2.

(456 KB) Simulation of the spatial evolution of three soliton generation on phase match with a high input intensity fundamental beam (three times higher than single soliton threshold 3.4GW/cm2, where the input intensity of 1 a.u. in the simulations corresponds to approximately 14GW/cm2). Left-hand-side the fundamental; Right-hand-side the harmonic. The propagation distance between successive frames is about 0.1 in units of diffraction lengths. Simulation parameters: D11=0.0943, D12=0.0847, D21=0.0478, D22=0.0423, α1,2=0, input intensity=0.73 a.u., and the Eqs. (1), (2) are normalized to set Γ=0.01.

Fig. 3.
Fig. 3.

The divergence angle (a.u.) and number of solitons predicted by CW simulations after 5 diffraction lengths as a function of input intensity (in arbitrary units). A gaussian beam input with w 1=w 2 was assumed with the anisotropic diffraction appropriate for PPKTP.

Fig. 4.
Fig. 4.

(172 KB) FW spatial field for different temporal snapshots at 10 diffraction lengths for an elliptical input beam with w1/w2=1.07. The inset sketches the shape of the temporal profile and the moving dot shows the location of the temporal slice shown.

Fig. 5.
Fig. 5.

Fundamental (FW) and second harmonic (SH) output patterns for two cases. (a) Single soliton generation. (b) Multi-soliton generation for a strongly asymmetric input beam. Insets show the input beams.

Fig. 6.
Fig. 6.

(1.33 MB) Multiple shots of the fundamental beam output patterns obtained with increasing the intensity from 0.5 GW/cm2 to 26 GW/cm2.

Fig. 7.
Fig. 7.

(404 KB) Calculated evolution with propagation distance of the fundamental (left-hand-side) and the harmonic (right-hand-side) at ΔkL≈15π under the same conditions as Fig. 2 (for which ΔkL=0).

Fig. 8.
Fig. 8.

(531 KB) Evolution of the output fundamental beam pattern with changing phase-mismatch, ΔkL, and fixed intensity. Note that there is a change in the camera sensitivity scale at around +0.2π to enhance the satellite peaks which saturates the output on the central soliton.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i A 1 x + ( D 11 2 A 1 z 2 + D 12 2 A 1 y 2 ) + α 2 ( ω ) 2 A 1 2 A 1 = Γ A 2 A 1 * exp ( i Δ k x )
i A 2 x + ( D 21 2 A 2 z 2 + D 22 2 A 2 y 2 ) + α 2 ( ω ) 2 A 2 2 A 2 = Γ A 1 2 exp ( i Δ k x )

Metrics