Abstract

We demonstrate fiber-optic quantum key distribution (QKD) at 1550 nm using single-photon detectors operating at 5 MHz. Such high-speed single-photon detectors are essential to the realization of efficient QKD. However, after-pulses increase bit errors. In the demonstration, we discard after-pulses by measuring time intervals of detection events. For a fiber length of 10.5 km, we have achieved a key rate of 17 kHz with an error of 2%.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  2. P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).
  3. P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
    [Crossref]
  4. M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).
  5. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
    [Crossref]
  6. A. Yoshizawa, R. Kaji, and H. Tsuchida, “A method of discarding after-pulses in single-photon detection for quantum key distribution,” Jpn. J. Appl. Phys. 41, 6016–6017 (2002).
    [Crossref]
  7. D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
  8. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated mode single photon detector,” Electron. Lett. 38, 1468–1469 (2002).
    [Crossref]
  9. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
    [Crossref] [PubMed]
  10. D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
    [Crossref]
  11. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

2002 (4)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “A method of discarding after-pulses in single-photon detection for quantum key distribution,” Jpn. J. Appl. Phys. 41, 6016–6017 (2002).
[Crossref]

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated mode single photon detector,” Electron. Lett. 38, 1468–1469 (2002).
[Crossref]

2001 (4)

P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
[Crossref]

M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

2000 (1)

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[Crossref]

1992 (1)

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Bethune, D. S.

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[Crossref]

Bonfrate, G.

P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).

Bourennane, M.

M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Buller, G. S.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
[Crossref]

P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).

Ciscar, J. P.

M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

Guinnard, O.

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

Hiskett, P. A.

P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
[Crossref]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated mode single photon detector,” Electron. Lett. 38, 1468–1469 (2002).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “A method of discarding after-pulses in single-photon detection for quantum key distribution,” Jpn. J. Appl. Phys. 41, 6016–6017 (2002).
[Crossref]

Karlsson, A.

M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).

Mathes, M.

M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).

Rarity, J. G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Ribordy, G.

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Risk, W. P.

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[Crossref]

Smith, J. M.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
[Crossref]

Stefanov, A.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Stuchi, D.

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

Stucki, D.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Townsend, P. D.

P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
[Crossref]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated mode single photon detector,” Electron. Lett. 38, 1468–1469 (2002).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “A method of discarding after-pulses in single-photon detection for quantum key distribution,” Jpn. J. Appl. Phys. 41, 6016–6017 (2002).
[Crossref]

Wall, T.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “A method of discarding after-pulses in single-photon detection for quantum key distribution,” Jpn. J. Appl. Phys. 41, 6016–6017 (2002).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated mode single photon detector,” Electron. Lett. 38, 1468–1469 (2002).
[Crossref]

Zbinden, H.

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Electron. Lett. (2)

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 µm,” Electron. Lett. 37, 1081–1082 (2001).
[Crossref]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated mode single photon detector,” Electron. Lett. 38, 1468–1469 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[Crossref]

J. Mod. Opt. (3)

P. A. Hiskett, G. Bonfrate, G. S. Buller, and P. D. Townsend, “Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 µm,” J. Mod. Opt. 48, 1957–1966 (2001).

M. Bourennane, A. Karlsson, J. P. Ciscar, and M. Mathes, “Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,” J. Mod. Opt. 48, 1983–1995 (2001).

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “A method of discarding after-pulses in single-photon detection for quantum key distribution,” Jpn. J. Appl. Phys. 41, 6016–6017 (2002).
[Crossref]

New J. Phys. (1)

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).

Phys. Rev. Lett. (1)

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (1)

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

ln p interval(Δtn ) of D0.

Fig. 2.
Fig. 2.

ln p interval(Δtn ) of D1.

Fig. 3.
Fig. 3.

p after-pulse versus Δtn .

Fig. 4.
Fig. 4.

Experimental setup for quantum key distribution. LD1 and LD2: gain-switched laser diodes, PC: polarization controller, PBS1 and PBS2: polarizing beam splitters, HWP: half-wave plate, QWP: quarter-wave plate, M: mirror, DL: delay line, FRM: Faraday rotator mirror, D0 and D1: single-photon detectors, SFG: synthesized function generator, DG: delay generator, PM: phase modulator, C-APD: conventional avalanche photodiode, PRNG: pseudo-random number generator, AT: attenuator, DSF1 and DSF2: dispersion-shifted single-mode fibers, FS: frequency synthesizer.

Fig. 5.
Fig. 5.

Measured and calculated quantum bit-error rates (solid circles and open squares, respectively) and corresponding key rates (open circles) of D0.

Fig. 6.
Fig. 6.

Measured and calculated quantum bit-error rates (solid circles and open squares, respectively) and corresponding key rates (open circles) of D1.

Tables (1)

Tables Icon

Table 1. Operating conditions and evaluation results of single-photon detectors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p interval ( Δ t n ) = c ( Δ t n ) e ( n 1 ) η μ [ ( 1 e η μ ) + p after pulse ( Δ t n ) ]
c ( Δ t n ) = Π k = 1 n 1 [ 1 p after pulse ( Δ t n ) ] .
r = k v exp ( k v Δ t dis card ) .
e qber d thermal 2 k + 1 2 n = 1 1 k p after pulse ( Δ t discard + Δ t n ) + e others .

Metrics