Abstract

We demonstrate fiber-optic quantum key distribution (QKD) at 1550 nm using single-photon detectors operating at 5 MHz. Such high-speed single-photon detectors are essential to the realization of efficient QKD. However, after-pulses increase bit errors. In the demonstration, we discard after-pulses by measuring time intervals of detection events. For a fiber length of 10.5 km, we have achieved a key rate of 17 kHz with an error of 2%.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum cryptography,�?? Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  2. P. A. Hiskett, G. Bonfrate, G. S. Buller and P. D. Townsend, �??Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 m,�?? J. Mod. Opt. 48, 1957-1966 (2001).
  3. P. A. Hiskett, J. M. Smith, G. S. Buller and P. D. Townsend, �??Low-noise single-photon detection at wavelength 1.55 m,�?? Electron. Lett. 37, 1081-1082 (2001).
    [CrossRef]
  4. M. Bourennane, A. Karlsson, J. P. Ciscar and M. Mathes, �??Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,�?? J. Mod. Opt. 48, 1983-1995 (2001).
  5. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity and T. Wall, �??Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,�?? J. Mod. Opt. 48, 1967-1981 (2001).
    [CrossRef]
  6. A. Yoshizawa, R. Kaji and H. Tsuchida, �??A method of discarding after-pulses in single-photon detection for quantum key distribution,�?? Jpn. J. Appl. Phys. 41, 6016-6017 (2002).
    [CrossRef]
  7. D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, �??Quantum key distribution over 67 km with a plug & play system,�?? New J. Phys. 4, 41.1-41.8 (2002).
  8. A. Yoshizawa, R. Kaji and H. Tsuchida, �??Quantum efficiency evaluation method for gated mode single photon detector,�?? Electron. Lett. 38, 1468-1469 (2002).
    [CrossRef]
  9. C. H. Bennett, �??Quantum cryptography using any two nonorthogonal states,�?? Phys. Rev. Lett. 68, 3121-3124 (1992).
    [CrossRef] [PubMed]
  10. D. S. Bethune and W. P. Risk, �??An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,�?? IEEE J. Quantum Electron. 36, 340-347 (2000).
    [CrossRef]
  11. C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public Key Distribution and Coin Tossing,�?? in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175-179.

Electron. Lett. (2)

P. A. Hiskett, J. M. Smith, G. S. Buller and P. D. Townsend, �??Low-noise single-photon detection at wavelength 1.55 m,�?? Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

A. Yoshizawa, R. Kaji and H. Tsuchida, �??Quantum efficiency evaluation method for gated mode single photon detector,�?? Electron. Lett. 38, 1468-1469 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. S. Bethune and W. P. Risk, �??An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,�?? IEEE J. Quantum Electron. 36, 340-347 (2000).
[CrossRef]

J. Mod. Opt. (3)

P. A. Hiskett, G. Bonfrate, G. S. Buller and P. D. Townsend, �??Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 m,�?? J. Mod. Opt. 48, 1957-1966 (2001).

M. Bourennane, A. Karlsson, J. P. Ciscar and M. Mathes, �??Single-photon counters in the telecommunication wavelength region of 1550 nm for quantum information processing,�?? J. Mod. Opt. 48, 1983-1995 (2001).

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity and T. Wall, �??Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,�?? J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji and H. Tsuchida, �??A method of discarding after-pulses in single-photon detection for quantum key distribution,�?? Jpn. J. Appl. Phys. 41, 6016-6017 (2002).
[CrossRef]

New J. Phys. (1)

D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, �??Quantum key distribution over 67 km with a plug & play system,�?? New J. Phys. 4, 41.1-41.8 (2002).

Phys. Rev. Lett. (1)

C. H. Bennett, �??Quantum cryptography using any two nonorthogonal states,�?? Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum cryptography,�?? Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (1)

C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public Key Distribution and Coin Tossing,�?? in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175-179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

ln p interval(Δtn ) of D0.

Fig. 2.
Fig. 2.

ln p interval(Δtn ) of D1.

Fig. 3.
Fig. 3.

p after-pulse versus Δtn .

Fig. 4.
Fig. 4.

Experimental setup for quantum key distribution. LD1 and LD2: gain-switched laser diodes, PC: polarization controller, PBS1 and PBS2: polarizing beam splitters, HWP: half-wave plate, QWP: quarter-wave plate, M: mirror, DL: delay line, FRM: Faraday rotator mirror, D0 and D1: single-photon detectors, SFG: synthesized function generator, DG: delay generator, PM: phase modulator, C-APD: conventional avalanche photodiode, PRNG: pseudo-random number generator, AT: attenuator, DSF1 and DSF2: dispersion-shifted single-mode fibers, FS: frequency synthesizer.

Fig. 5.
Fig. 5.

Measured and calculated quantum bit-error rates (solid circles and open squares, respectively) and corresponding key rates (open circles) of D0.

Fig. 6.
Fig. 6.

Measured and calculated quantum bit-error rates (solid circles and open squares, respectively) and corresponding key rates (open circles) of D1.

Tables (1)

Tables Icon

Table 1. Operating conditions and evaluation results of single-photon detectors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p interval ( Δ t n ) = c ( Δ t n ) e ( n 1 ) η μ [ ( 1 e η μ ) + p after pulse ( Δ t n ) ]
c ( Δ t n ) = Π k = 1 n 1 [ 1 p after pulse ( Δ t n ) ] .
r = k v exp ( k v Δ t dis card ) .
e qber d thermal 2 k + 1 2 n = 1 1 k p after pulse ( Δ t discard + Δ t n ) + e others .

Metrics