Abstract

A two-stage optical parametric amplifier generating 5 ns 208 kW peak power pulses in the spectral region at 1.535 µm in a diffraction-limited beam was realized in a single periodically poled KTP crystal. The maximum small-signal gain for the two stages reached 75dB and the total conversion efficiency was 30%. An analysis of the small-signal gain dependence on the M2 of the pump beam is presented for the collinear and noncollinear OPA. Efficient spectral broadening of the signal was demonstrated in short pieces of single-mode telecommunication fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. V. Yuamashev, �??Saturable absorber Co2+:MgAl2O4 crystal for Q Switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:Glass Lasers,�?? Appl. Opt. 38, 6343-6346 (1999).
    [CrossRef]
  2. M. S. Webb, P. Moulton, J. J. Kasinski, R. L. Burnham, G. Loiacono, and R. Stolzenberg, �??High-average-power KTiOAsO4 optical parametric oscillator,�?? Opt. Lett. 23, 1161-1163 (1998).
    [CrossRef]
  3. J. A. C. Terry, Y. Cui, Y. Yang, W. Sibbett, and M. H. Dunn, �??Low-threshold operation of an all-solid-state KTP optical parametric oscillator,�?? J. Opt. Soc. Am. B 11, 758-769 (1994).
    [CrossRef]
  4. R. Dabu, C. Fenic, and A. Stratan, �??Intracavity pumped nanosecond optical parametric oscillator emitting in the eye-safe range,�?? Appl. Opt. 40, 4334-4340 (2001).
    [CrossRef]
  5. G. W. Baxter, Ph. Schlup. I. McKinnie, J.Hellström, and F. Laurell, �??Single-mode near-infrared optical parametric oscillator amplifier based on periodically poled KTiOPO4,�?? Appl. Opt. 40, 6659-6662 (2001).
    [CrossRef]
  6. S.-K. Choi, M. Vasilyev, and P. Kumar, �??Noiseless optical amplification of images,�?? Phys. Rev. Lett. 83, 1938-1941 (1999).
    [CrossRef]
  7. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, �??Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator,�?? Opt. Lett. 23, 1886-1888 (1998).
    [CrossRef]
  8. K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, �??Microlaserpumped periodically polsed lithium niobate optical parametric generator-optical parametric amplifier,�?? Opt. Lett. 25, 557-559 (2000).
    [CrossRef]
  9. J. Hellström, G. Karlsson, V. Pasiskevicius, and F. Laurell, �??Optical parametric amplification in periodically poled KTiOPO4 seeded by an Er-Yb:glass microchip laser,�?? Opt. Lett. 26, 352 (2001).
    [CrossRef]
  10. G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, �??Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,�?? Opt. Commun. 217, 317-324 (2003).
    [CrossRef]
  11. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, �??High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4,�?? Opt. Lett. 25, 174-176 (2000).
    [CrossRef]
  12. I. Jovanovic, B. J. Comaskey, and D. M. Pennington, �??Angular effects and beam quality in optical amplification,�?? J. Appl. Phys. 90, 4328 (2001).
    [CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, �??Angular effects and beam quality in optical amplification,�?? J. Appl. Phys. 90, 4328 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, �??Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,�?? Opt. Commun. 217, 317-324 (2003).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S.-K. Choi, M. Vasilyev, and P. Kumar, �??Noiseless optical amplification of images,�?? Phys. Rev. Lett. 83, 1938-1941 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup

Fig. 2.
Fig. 2.

Measured single-pass peak power gain in the first OPA stage as a function of the seed power (data points). Calculated small-signal gain in the PPKTP OPA as a function of the pump M2 for different QPM periods (solid lines); 1–35.4 µm, 2–35.34µm, 3–35.2µm.

Fig. 3.
Fig. 3.

Two-stage OPA signal (solid squares) and idler (open circles) energy as a function of the second stage pump.

Fig. 4.
Fig. 4.

OPA signal spectrum after propagation in 5m of single-mode telecommunication fiber at different input energies.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G = cosh 2 ( ( g L ) 2 ( Δ k L 2 ) 2 ) ,
g = ( 8 π 2 d eff 2 I p ( ε 0 n p n s n i c λ s λ p ) 1 ) 1 2 ,
Δ k L = ( Δ k θ p ) M 2 λ p L 4 π w ,
Δ k L = ( 2 Δ k θ p 2 ) M 4 λ p 2 L 16 π 2 w 2 ,

Metrics