Abstract

For the first time to our knowledge, carbon implantation into YAG crystals doped with Nd has been used to produce optical waveguides. A considerable index decrease in the nuclear region (i.e., the region where the energetic ions stop) of ~ 2.5% was obtained with a low dose implant, while giving an index enhancement in the guiding region of ~ 0.35%. After an annealing step necessary to recover the transparency of the crystals, the layer of reduced refractive index produced by implantation is preserved. Spectroscopic studies carried out in a waveguiding configuration show that emission bands coming from the 4F3/2 level present a slight broadening, while its associated lifetime is similar to that reported in bulk crystals (240 µs).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. D. Townsend, P. J. Chandler and L. Zhang, Optical effects of ion implantation (CUP, 1994).
    [CrossRef]
  2. T. Tamir, Guided-wave optoelectronics (Springer-Verlag, 1988).
    [CrossRef]
  3. P. Baldi, M.P. De Micheli and K. El Hadi, �??Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,�?? Opt. Eng. 37, 1193-1202 (1998).
    [CrossRef]
  4. P. D. Townsend, �??An overview of ion-implanted optical waveguide profiles,�?? Nucl. Instr. Meth. B 46, 18-25 (1990).
    [CrossRef]
  5. P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper and L. Zhang, �?? Ion-implanted Nd:YAG planar waveguide laser,�?? Electron. Lett. 25, 985-986 (1989).
    [CrossRef]
  6. L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd and A. C. Tropper, �??Characterization of ion implanted waveguides in Nd:YAG,�?? J. Appl. Phys. 69, 3440-3446 (1991).
    [CrossRef]
  7. G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar and M. Domenech, �??Optical waveguides in Nd:YAG by proton implantation,�?? Opt. Commun. 218, 141-146 (2003).
    [CrossRef]
  8. P. J. Chandler, L. Zhang, J. M. Cabrera, and P. D. Townsend, �??�??Missing modes�?? in ion implanted waveguides,�?? Appl. Phys. Lett. 54, 1287-1289 (1989).
    [CrossRef]
  9. P. D. Townsend, �??Helium ion implanted waveguide lasers,�?? Nucl. Instr. Meth. B 62, 405-409 (1992).
    [CrossRef]
  10. P. D. Townsend, P. J. Chandler, R. A. Wood, L. Zhang, J. McCallum and C. W. McHargue, �??Chemically stabilised ion implanted waveguides in sapphire,�?? Electron. Lett. 26, 1193-1194 (1990).
    [CrossRef]
  11. F. Chen, X.-L. Wang, K.-M. Wang, Q.-M- Lu, and D.-Y. Shen, �??Optical waveguides formed in Nd:YVO4 by MeV Si+ implantation,�?? Appl. Phys. Lett. 80 3473-3475 (2002).
    [CrossRef]
  12. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi and T. Yanagitani, �??Optical properties of highly efficient laser oscillation of Nd:YAG ceramics,�?? Appl. Phys. B. 71, 469-473 (2000).
    [CrossRef]
  13. 13. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend and L. Zhang, �??Ion implanted Nd:YAG waveguide lasers,�?? IEEE J. Quantum Electron. 27, 428-433 (1991)
    [CrossRef]

Appl. Phys. B.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi and T. Yanagitani, �??Optical properties of highly efficient laser oscillation of Nd:YAG ceramics,�?? Appl. Phys. B. 71, 469-473 (2000).
[CrossRef]

Appl. Phys. Lett.

F. Chen, X.-L. Wang, K.-M. Wang, Q.-M- Lu, and D.-Y. Shen, �??Optical waveguides formed in Nd:YVO4 by MeV Si+ implantation,�?? Appl. Phys. Lett. 80 3473-3475 (2002).
[CrossRef]

P. J. Chandler, L. Zhang, J. M. Cabrera, and P. D. Townsend, �??�??Missing modes�?? in ion implanted waveguides,�?? Appl. Phys. Lett. 54, 1287-1289 (1989).
[CrossRef]

Electron. Lett.

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper and L. Zhang, �?? Ion-implanted Nd:YAG planar waveguide laser,�?? Electron. Lett. 25, 985-986 (1989).
[CrossRef]

P. D. Townsend, P. J. Chandler, R. A. Wood, L. Zhang, J. McCallum and C. W. McHargue, �??Chemically stabilised ion implanted waveguides in sapphire,�?? Electron. Lett. 26, 1193-1194 (1990).
[CrossRef]

IEEE J. Quantum Electron.

13. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend and L. Zhang, �??Ion implanted Nd:YAG waveguide lasers,�?? IEEE J. Quantum Electron. 27, 428-433 (1991)
[CrossRef]

J. Appl. Phys.

L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd and A. C. Tropper, �??Characterization of ion implanted waveguides in Nd:YAG,�?? J. Appl. Phys. 69, 3440-3446 (1991).
[CrossRef]

Nucl. Instr. Meth. B

P. D. Townsend, �??Helium ion implanted waveguide lasers,�?? Nucl. Instr. Meth. B 62, 405-409 (1992).
[CrossRef]

P. D. Townsend, �??An overview of ion-implanted optical waveguide profiles,�?? Nucl. Instr. Meth. B 46, 18-25 (1990).
[CrossRef]

Opt. Commun.

G. V. Vázquez, J. Rickards, H. Márquez, G. Lifante, E. Cantelar and M. Domenech, �??Optical waveguides in Nd:YAG by proton implantation,�?? Opt. Commun. 218, 141-146 (2003).
[CrossRef]

Opt. Eng.

P. Baldi, M.P. De Micheli and K. El Hadi, �??Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,�?? Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

Other

P. D. Townsend, P. J. Chandler and L. Zhang, Optical effects of ion implantation (CUP, 1994).
[CrossRef]

T. Tamir, Guided-wave optoelectronics (Springer-Verlag, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Mode positions (triangles) and refractive index profile (solid line) for C3+ implanted Nd:YAG with 7 MeV at a dose of 1×1016 ions/cm2. The dashed line represents the substrate refractive index.

Fig. 2.
Fig. 2.

Emission spectra of Nd3+ ions in YAG crystal, measured in bulk (solid lines) and in waveguide (dotted lines), after excitation to the 2H9/2:4F5/2 at room temperature.

Fig. 3.
Fig. 3.

Temporal evolution associated to the 4F3/24I11/2 Nd3+ transition measured at 1.064 µm, where a lifetime of 236 µs is calculated

Metrics