Abstract

We describe an extended cavity femtosecond Cr:LiSAF laser pumped by inexpensive single spatial mode diodes. Using a multi-pass cavity (MPC) to lower the repetition rate and a saturable Bragg reflector (SBR) for mode-locking, pulse energies of 0.75 nJ at a repetition rate of 8.6 MHz are achieved with durations of 39 fs and bandwidths of 20 nm in a prismless configuration. Pulse energies of 0.66 nJ at a repetition rate of 8.4 MHz with durations of 43 fs and bandwidths of 18.5 nm are generated using prisms for dispersion compensation. This laser offers performance approaching that of standard Ti:sapphire lasers at a fraction of the cost.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase and B. H. T. Chai, "Investigation of the Laser Properties of Cr3+:LiSrGaF6," IEEE J. Quantum Elect. 28, 2612-2618 (1992).
    [CrossRef]
  2. V. P. Yanovsky, A. Korytin, F. Wise, A. Cassanho and H. Jenssen, "Femtosecond diode-pumped Cr: LiSGAF lasers," IEEE J. Sel. Top. Quantum Elect. 2, 465-472 (1996).
    [CrossRef]
  3. M. J. P. Dymott and A. I. Ferguson, "Self-mode-locked diode-pumped Cr:LiSAF laser producing 34-fs pulses at 42-mW average power," Opt. Lett. 20, 1157-1159 (1995).
    [CrossRef] [PubMed]
  4. S. Uemura and K. Torizuka, "Development of a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser," IEEE J. Quantum Elect. 39, 68-73 (2003).
    [CrossRef]
  5. P. M. W. French, R. Mellish and J. R. Taylor, "Modelocked all-solid-state diode-pumped Cr:LiSAF laser," Opt. Lett. 18, 1934-1936 (1993).
    [CrossRef] [PubMed]
  6. K. Gäbel, P. Ruâbüldt, R. Lebert, P. Loosen, R. Poprawe, H. Heyer and A. Valster, "Diode pumped, chirped mirror dispersion compensated, fs-laser," Opt. Commun. 153, 275-281 (1998).
    [CrossRef]
  7. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller and W. Sibbett, "Highly compact and efficient femtosecond Cr:LiSAF lasers," IEEE J. Quantum Elect. 38, 360-368 (2002).
    [CrossRef]
  8. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
    [CrossRef]
  9. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan and J. E. Cuningham, "Mode-locked ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. in Quantum Elect. 2, 454-464 (1996).
    [CrossRef]
  10. S. H. Cho, B. E. Bouma, E. P. Ippen and J. G. Fujimoto, "Low-repetition-rate high-peak power Kerr-lens mode-locked Ti:Al2O3 laser using a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
    [CrossRef]
  11. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham and W. Knox, "Generation of 90-nJ pulses with a 4 MHz repetition rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001).
    [CrossRef]
  12. N. Matuschek, F. X. Kärtner and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Elect. 4, 197 (1998).
    [CrossRef]

IEEE J. Quantum Elect.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase and B. H. T. Chai, "Investigation of the Laser Properties of Cr3+:LiSrGaF6," IEEE J. Quantum Elect. 28, 2612-2618 (1992).
[CrossRef]

S. Uemura and K. Torizuka, "Development of a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser," IEEE J. Quantum Elect. 39, 68-73 (2003).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller and W. Sibbett, "Highly compact and efficient femtosecond Cr:LiSAF lasers," IEEE J. Quantum Elect. 38, 360-368 (2002).
[CrossRef]

IEEE J. Sel. Top. in Quantum Elect.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan and J. E. Cuningham, "Mode-locked ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. in Quantum Elect. 2, 454-464 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Elect.

N. Matuschek, F. X. Kärtner and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Elect. 4, 197 (1998).
[CrossRef]

V. P. Yanovsky, A. Korytin, F. Wise, A. Cassanho and H. Jenssen, "Femtosecond diode-pumped Cr: LiSGAF lasers," IEEE J. Sel. Top. Quantum Elect. 2, 465-472 (1996).
[CrossRef]

Opt. Commun.

K. Gäbel, P. Ruâbüldt, R. Lebert, P. Loosen, R. Poprawe, H. Heyer and A. Valster, "Diode pumped, chirped mirror dispersion compensated, fs-laser," Opt. Commun. 153, 275-281 (1998).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup of the extended cavity femtosecond Cr:LiSAF laser. A multi-pass cavity (MPC) reduces the repetition rate while leaving the Gaussian beam invariant.

Fig. 2.
Fig. 2.

Autocorrelation (a) and spectrum (b) of the extended cavity Cr:LiSAF laser using prisms for dispersion compensation. The output power in this configuration is 5.5 mW at an 8.4 MHz repetition rate, resulting in pulse energies of 0.66 nJ.

Fig. 3.
Fig. 3.

Autocorrelation (a) and spectrum (b) of the extended cavity Cr:LiSAF laser using only DCMs for dispersion compensation. The output power in this configuration is 6.5 mW at an 8.6 MHz repetition rate, resulting in pulse energies of 0.75 nJ.

Metrics