Abstract

Aging effects of porous silicon (PS) and the origin of blue shift are investigated. Photoluminescence (PL) measurements of the PS prepared with HF-EtOH solution showed a 210 meV blue shift after 1.5 months. It is found from deconvolution of the PL spectra that this shift is not fully related to the quantum confinement (QC) effect. For stable PS formation, a HF-EtOH-H2O2 solution is used. A stable luminescence at 2.01 eV with a Gaussian distribution is obtained when the samples are kept in H2O2 for 45 min after the anodization.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction

Jia-Chuan Lin, Wei-Lun Chen, and Wei-Chih Tsai
Opt. Express 14(21) 9764-9769 (2006)

Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring

Bo-Han Lai, Chih-Hsien Cheng, Yi-Hao Pai, and Gong-Ru Lin
Opt. Express 18(5) 4449-4456 (2010)

Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes

Tero Jalkanen, Jarno Salonen, Vicente Torres-Costa, Kazuhiro Fukami, Tetsuo Sakka, and Yukio H. Ogata
Opt. Express 19(14) 13291-13305 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell Syst. Tech. J. 35, 333 (1956).
  2. K. Yamagata and T. Yonehara, “Bonding, splitting and thinning by porous Si in ELTRAN ® SOI-Epi Wafer TM,” http://www.canon.co.jp/eltran
  3. W.-K. Chen, ed., The VLSI Handbook, ISBN 0-8493-8593-8 (2000).
  4. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
    [Crossref]
  5. V. Lehman and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett. 58, 856 (1991).
    [Crossref]
  6. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
    [Crossref]
  7. V. Mulloni and L. Pavesi, “Electrochemically oxidized porous silicon microcavities,” Mater. Sci. Eng. B 69, 59 (2000).
    [Crossref]
  8. H. Elhouichet and M. Oueslati, “The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution,” Appl. Surf. Sci. 191, 1 (2002).
    [Crossref]
  9. M. V. Wolkinet al., “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197 (1999).
    [Crossref]
  10. V. Lehman, Electrochemistry of Silicon ISBN:3-527-60027-2 (2002).
  11. Z. Yamaniet al., “Red to green rainbow photoluminescence from unoxidized silicon nanocrystallites,” J. Appl. Phys. 83, 3929 (1998).
    [Crossref]
  12. T. Yoshidaet al., “Near-IR LEDs fabricated with monodispersed nanocrystallite Si,” Solid State Technol. 45, 41 (2002).
  13. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
    [Crossref]

2002 (2)

H. Elhouichet and M. Oueslati, “The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution,” Appl. Surf. Sci. 191, 1 (2002).
[Crossref]

T. Yoshidaet al., “Near-IR LEDs fabricated with monodispersed nanocrystallite Si,” Solid State Technol. 45, 41 (2002).

2000 (2)

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[Crossref]

V. Mulloni and L. Pavesi, “Electrochemically oxidized porous silicon microcavities,” Mater. Sci. Eng. B 69, 59 (2000).
[Crossref]

1999 (1)

M. V. Wolkinet al., “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197 (1999).
[Crossref]

1998 (1)

Z. Yamaniet al., “Red to green rainbow photoluminescence from unoxidized silicon nanocrystallites,” J. Appl. Phys. 83, 3929 (1998).
[Crossref]

1997 (1)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[Crossref]

1991 (1)

V. Lehman and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett. 58, 856 (1991).
[Crossref]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[Crossref]

1956 (1)

A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell Syst. Tech. J. 35, 333 (1956).

Bisi, O.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[Crossref]

Calcott, P. D. J.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[Crossref]

Canham, L. T.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[Crossref]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[Crossref]

Cullis, A. G.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[Crossref]

Elhouichet, H.

H. Elhouichet and M. Oueslati, “The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution,” Appl. Surf. Sci. 191, 1 (2002).
[Crossref]

Gösele, U.

V. Lehman and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett. 58, 856 (1991).
[Crossref]

Lehman, V.

V. Lehman and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett. 58, 856 (1991).
[Crossref]

V. Lehman, Electrochemistry of Silicon ISBN:3-527-60027-2 (2002).

Mulloni, V.

V. Mulloni and L. Pavesi, “Electrochemically oxidized porous silicon microcavities,” Mater. Sci. Eng. B 69, 59 (2000).
[Crossref]

Ossicini, S.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[Crossref]

Oueslati, M.

H. Elhouichet and M. Oueslati, “The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution,” Appl. Surf. Sci. 191, 1 (2002).
[Crossref]

Pavesi, L.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[Crossref]

V. Mulloni and L. Pavesi, “Electrochemically oxidized porous silicon microcavities,” Mater. Sci. Eng. B 69, 59 (2000).
[Crossref]

Uhlir, A.

A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell Syst. Tech. J. 35, 333 (1956).

Wolkin, M. V.

M. V. Wolkinet al., “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197 (1999).
[Crossref]

Yamagata, K.

K. Yamagata and T. Yonehara, “Bonding, splitting and thinning by porous Si in ELTRAN ® SOI-Epi Wafer TM,” http://www.canon.co.jp/eltran

Yamani, Z.

Z. Yamaniet al., “Red to green rainbow photoluminescence from unoxidized silicon nanocrystallites,” J. Appl. Phys. 83, 3929 (1998).
[Crossref]

Yonehara, T.

K. Yamagata and T. Yonehara, “Bonding, splitting and thinning by porous Si in ELTRAN ® SOI-Epi Wafer TM,” http://www.canon.co.jp/eltran

Yoshida, T.

T. Yoshidaet al., “Near-IR LEDs fabricated with monodispersed nanocrystallite Si,” Solid State Technol. 45, 41 (2002).

Appl. Phys. Lett. (2)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[Crossref]

V. Lehman and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett. 58, 856 (1991).
[Crossref]

Appl. Surf. Sci. (1)

H. Elhouichet and M. Oueslati, “The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution,” Appl. Surf. Sci. 191, 1 (2002).
[Crossref]

Bell Syst. Tech. J. (1)

A. Uhlir, “Electrolytic shaping of germanium and silicon,” Bell Syst. Tech. J. 35, 333 (1956).

J. Appl. Phys. (2)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[Crossref]

Z. Yamaniet al., “Red to green rainbow photoluminescence from unoxidized silicon nanocrystallites,” J. Appl. Phys. 83, 3929 (1998).
[Crossref]

Mater. Sci. Eng. B (1)

V. Mulloni and L. Pavesi, “Electrochemically oxidized porous silicon microcavities,” Mater. Sci. Eng. B 69, 59 (2000).
[Crossref]

Phys. Rev. Lett. (1)

M. V. Wolkinet al., “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197 (1999).
[Crossref]

Solid State Technol. (1)

T. Yoshidaet al., “Near-IR LEDs fabricated with monodispersed nanocrystallite Si,” Solid State Technol. 45, 41 (2002).

Surf. Sci. Rep. (1)

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[Crossref]

Other (3)

V. Lehman, Electrochemistry of Silicon ISBN:3-527-60027-2 (2002).

K. Yamagata and T. Yonehara, “Bonding, splitting and thinning by porous Si in ELTRAN ® SOI-Epi Wafer TM,” http://www.canon.co.jp/eltran

W.-K. Chen, ed., The VLSI Handbook, ISBN 0-8493-8593-8 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simplified cross-sectional drawing of anodization cell. The designed cell provided practical wax-free sample mounting.

Fig. 2.
Fig. 2.

Variation of aging of normalized PS luminescence with time, formed by HF:EtOH.

Fig. 3.
Fig. 3.

Variation of aging of PS luminescence, formed by HF:EtOH, with time. (a) After 1 h, (b) after 1 day, (c) after 2 days, (d) after 2 wk, (e) after 1.5 months

Fig. 4.
Fig. 4.

Variation of aging of PS luminescence with time, formed by 6HF:4EtOH:H2O2 (as measured).

Fig. 5.
Fig. 5.

Variation of aging of PS luminescence with time. PS is formed by 6HF:4EtOH:H2O2 solution and kept in H2O2 for 45 min.

Metrics