Abstract

We present a multispectral digital colposcope (MDC) to measure multispectral autofluorescence and reflectance images of the cervix by using an inexpensive color CCD camera. The diagnostic ability of the MDC was evaluated by application of MDC spectral response to fluorescence and reflectance spectra measured from a large clinical trial. High diagnostic performance was achieved by use of only two excitation wavelengths: 330 and 440 nm. Good quality autofluorescence images of the human cervix were acquired in vivo with the MDC. Automated diagnostic algorithms correctly identified CIN (cervical intraepithelial neoplasia) lesions from MDC fluorescence images. The MDC has the potential to provide a cost-effective alternative to standard colposcopy and better direction of biopsies.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cancer Facts and Figures, American Society of Cancer, 2001.
  2. International Agency for Research in Cancer, 2002.
  3. L. G. Koss, “The Papanicoloau test for cervical cancer detection: a triumph and a tragedy,” J. Am. Med. Assoc. 261, 737–743 (1989).
    [Crossref]
  4. M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
    [Crossref] [PubMed]
  5. M. F. Mitchell, “Preinvasive diseases of the female low genital track,” in Operative GynecologyD. M. Greshenson, A. DeCherney, and S. Curry, eds. (Saunders, Philadelphia, 1993), p. 231.
  6. R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
    [Crossref]
  7. S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
    [Crossref] [PubMed]
  8. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
    [Crossref] [PubMed]
  9. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
    [Crossref] [PubMed]
  10. N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
    [Crossref]
  11. A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.
  12. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
    [PubMed]
  13. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
    [Crossref] [PubMed]
  14. I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).
  15. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1), 89–117, (2000).
    [Crossref] [PubMed]
  16. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
    [Crossref] [PubMed]
  17. R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
    [Crossref] [PubMed]
  18. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl. Spectrosc. 53, 302–311 (1998).
    [Crossref]
  19. R. A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211–5219 (1996).
    [Crossref] [PubMed]
  20. A. Mayevsky and B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–40 (1982).
    [Crossref] [PubMed]
  21. L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
    [Crossref]
  22. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32 (1998).
    [PubMed]
  23. D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).
  24. R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
    [Crossref] [PubMed]
  25. A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
    [Crossref] [PubMed]
  26. T. Wu, J. Y. Qu, T. H. Cheung, K. W. K. Lo, and M. Y. Yu, “Preliminary study of detecting neoplastic growths in vivo with real time calibrated autofluorescence imaging,” Opt. Express 11, 291–298 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-291
    [Crossref] [PubMed]
  27. V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
    [Crossref]
  28. U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
    [Crossref]
  29. S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
    [Crossref] [PubMed]
  30. N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
    [Crossref] [PubMed]
  31. R. J. Kurman and D. Solomon, The Bethesda System for Reporting Cervical/Vaginal Cytologic Diagnosis (Springer-Verlag, New York, 1994).
    [Crossref]

2003 (1)

2002 (3)

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

2001 (5)

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

2000 (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1), 89–117, (2000).
[Crossref] [PubMed]

1999 (2)

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

1998 (5)

V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
[Crossref]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32 (1998).
[PubMed]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl. Spectrosc. 53, 302–311 (1998).
[Crossref]

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

1996 (4)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

R. A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211–5219 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

1994 (2)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

1989 (1)

L. G. Koss, “The Papanicoloau test for cervical cancer detection: a triumph and a tragedy,” J. Am. Med. Assoc. 261, 737–743 (1989).
[Crossref]

1982 (1)

A. Mayevsky and B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–40 (1982).
[Crossref] [PubMed]

Aalders, M.C.G.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Abu-Jawdeh, G.

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

Agrawal, A.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Atkinson, N.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

Backman, V.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Badizadegan, D.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Bambot, S.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Bodurka, D.

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

Bogaards, A.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Boiko, I.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

Boone, C. W.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Bratka, C.

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

Burke, L.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

Cantor, S.

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

Cantor, S. B.

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

Carr-Locke, D. L.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Chance, B.

A. Mayevsky and B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–40 (1982).
[Crossref] [PubMed]

Chang, S. K.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

Cheung, T. H.

Cox, D.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

Crum, C. P.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Dannecker, C.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Dasari, R. R.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

R. A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211–5219 (1996).
[Crossref] [PubMed]

Dattamajumdar, A. K.

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

de Blok, S.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Dickman, E. D.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Drezek, A.

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

Drezek, R.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

Durkin, A.

Fan, J.

Faupel, M. L.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Feld, M. S.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

R. A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211–5219 (1996).
[Crossref] [PubMed]

Ferris, D. G.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Follen, M.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

Follen-Mitchell, M.

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

Fuchs, H.

Ganguly, D.

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Gillenwater, A.

Grogan, S.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Gtaerkel, S.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

Herbst, A. L.

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

Herison, D. E.

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

Hillemanns, P.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Holtzapple, N.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Itzkan, I.

Jacob, R.

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Kemp, B.

Kobelin, M.

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

Koss, L. G.

L. G. Koss, “The Papanicoloau test for cervical cancer detection: a triumph and a tragedy,” J. Am. Med. Assoc. 261, 737–743 (1989).
[Crossref]

Kurman, R. J.

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

R. J. Kurman and D. Solomon, The Bethesda System for Reporting Cervical/Vaginal Cytologic Diagnosis (Springer-Verlag, New York, 1994).
[Crossref]

Lawhead, R. A.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Lewis, J. T.

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

Lo, K. W. K.

MacAulay, C.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

Mahadevan, A.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

Malpica, A.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

Manoharan, R.

Mayevsky, A.

A. Mayevsky and B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–40 (1982).
[Crossref] [PubMed]

Miller, J. A.

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Mitchell, M. F.

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

M. F. Mitchell, “Preinvasive diseases of the female low genital track,” in Operative GynecologyD. M. Greshenson, A. DeCherney, and S. Curry, eds. (Saunders, Philadelphia, 1993), p. 231.

Mitchell, M. Follen

V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

Modell, M.

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

Muller, M. G.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Muller, M.G.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Myrtle, J. F.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

Niloff, J.

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

Niloff, J. M.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

Noller, K. L.

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

Nordstrom, R. J.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

Parnell, J.

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

Pavlova, I.

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

Perelman, L. T.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Qu, J. Y.

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1), 89–117, (2000).
[Crossref] [PubMed]

V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

Richards-Kortum,

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

Richards-Kortum, R.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
[Crossref]

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl. Spectrosc. 53, 302–311 (1998).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

Richards-Kortum, R. R.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

S. B. Cantor, R.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

Sandison, D.

Schiffman, M. H.

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

Schottenfeld, D.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

Sheets, E. E.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Silveira, L.

Sokolov, K.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

Solomon, D.

R. J. Kurman and D. Solomon, The Bethesda System for Reporting Cervical/Vaginal Cytologic Diagnosis (Springer-Verlag, New York, 1994).
[Crossref]

Staerkel, G.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

Star, W. M.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32 (1998).
[PubMed]

Stepp, H.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Sun, D.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Thomas, G.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Thomsen, S.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

Tortolero-Luna, G.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

Trujillo, V.

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
[Crossref]

Utzinger, U.

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

V. Trujillo, D. Sandison, U. Utzinger, N. Ramanujam, M. Follen Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal to noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951 (1998).
[Crossref]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl. Spectrosc. 53, 302–311 (1998).
[Crossref]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

R. A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211–5219 (1996).
[Crossref] [PubMed]

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32 (1998).
[PubMed]

Wallace, M. B.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Wells, D.

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

Wilson, B. C.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32 (1998).
[PubMed]

Wright, T.

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

Wright, T. C.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

Wright, T. C. Jr.

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

Wu, T.

Yu, M. Y.

Zangaro, R. A.

Zelenchuk, A.

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

Zeyl, C.C.

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

Zhang, Q.

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

Zonios, G.

Zuluaga, A.

Appl. Opt. (1)

Appl. Spectrosc. (2)

Cancer Res. (1)

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, D. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NADH and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
[PubMed]

Gastroenterology (1)

I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (2)

U. Utzinger, V. Trujillo, N. Atkinson, M. F. Mitchell, S. Cantor, and R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects on tissue type, sample size population, and signal to noise ratio,” IEEE Trans. Biomed. Eng. 49, 1293–1303 (1999).
[Crossref]

S. K. Chang, M. Follen, A. Malpica, U. Utzinger, S. Gtaerkel, D. Cox, N. Atkinson, C. MacAulay, and R. Richards-Kortum, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
[Crossref] [PubMed]

J. Am. Med. Assoc. (2)

L. G. Koss, “The Papanicoloau test for cervical cancer detection: a triumph and a tragedy,” J. Am. Med. Assoc. 261, 737–743 (1989).
[Crossref]

R. J. Kurman, D. E. Herison, A. L. Herbst, K. L. Noller, and M. H. Schiffman, “Interim guidelines for management of abnormal cervical cytology,” J. Am. Med. Assoc. 271, 1866–1869 (1994).
[Crossref]

J. Biomed. Opt. (2)

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001).
[Crossref] [PubMed]

A. Bogaards, M.C.G. Aalders, C.C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg, “Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging,” J. Biomed. Opt. 7(2), 215–220 (2002).
[Crossref] [PubMed]

J. Lower Genital Tract Disease (1)

L. Burke, M. Modell, J. Niloff, M. Kobelin, G. Abu-Jawdeh, and A. Zelenchuk, “Identification of squamous intraepithelial lesions: fluorescence of cervical tissue during colposcopy,” J. Lower Genital Tract Disease 3, 159–162 (1999).
[Crossref]

J. of Lower Genital Tract Disease. (1)

D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” J. of Lower Genital Tract Disease. 5(2), 65–72 (2001).

Lasers Surg. Med. (4)

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo,” Lasers Surg. Med. 19, 46–62 (1996).
[Crossref] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg. Med. 19, 63–74 (1996).
[Crossref] [PubMed]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1), 89–117, (2000).
[Crossref] [PubMed]

Obstet. Gynecol. (2)

S. B. Cantor, M. Follen-Mitchell, G. Tortolero-Luna, C. Bratka, D. Bodurka, and R. Richards-Kortum, “Cost-effectiveness analysis of diagnosis and management of cervical squamous intraepithelial lesions,” Obstet. Gynecol. 91, 270–277 (1998).
[Crossref] [PubMed]

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, R. S. B. Cantor, and Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
[Crossref] [PubMed]

Opt. Express (1)

Photochem. Photobiol. (2)

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32 (1998).
[PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 6, 720–735 (1996).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. C. Wright, N. Atkinson, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–10197 (1994).
[Crossref] [PubMed]

Science (1)

A. Mayevsky and B. Chance, “Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer,” Science 217, 537–40 (1982).
[Crossref] [PubMed]

Other (6)

I. Pavlova, K. Sokolov, A. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser scanning fluorescence confocal microscopy,” submitted to Photochem. Photobiol. (2002).

A. K. Dattamajumdar, D. Wells, J. Parnell, J. T. Lewis, D. Ganguly, and T. C. Jr. Wright, “Preliminary experimental results from multi-center clinical trials for detection of cervical precancerous lesions using the Cerviscan system: a novel full-field evoked tissue fluorescence based imaging instruments,” in 23rd Annual Meeting of IEEE-Engineering in Medicine and Biology, Istanbul, Turkey, October 2001.

M. F. Mitchell, “Preinvasive diseases of the female low genital track,” in Operative GynecologyD. M. Greshenson, A. DeCherney, and S. Curry, eds. (Saunders, Philadelphia, 1993), p. 231.

Cancer Facts and Figures, American Society of Cancer, 2001.

International Agency for Research in Cancer, 2002.

R. J. Kurman and D. Solomon, The Bethesda System for Reporting Cervical/Vaginal Cytologic Diagnosis (Springer-Verlag, New York, 1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

System diagram of the MDC.

Fig. 2.
Fig. 2.

Picture of the MDC system.

Fig. 3.
Fig. 3.

Spectral response curves of the CV S3200 JAI color camera.

Fig. 4.
Fig. 4.

Se, Sp values for the classification algorithm when applied to simulated MDC data and the complete spectra at 330 nm and 440 nm excitation wavelengths.

Fig. 5.
Fig. 5.

Se and Sp of the four best performing excitation wavelengths and bandwidths combinations for the discrimination between SN and HGSIL. The fifth combination shows Se and Sp for the selected excitation wavelengths for the MDC.

Fig. 6.
Fig. 6.

(a) Fluorescence image of Exalite at 345 excitation, (b) red, (c) green, and (d) blue channels. (e) Intensity versus pixel number from the central horizontal cross section of images in (a) – (c) illustrating nonuniform illumination at edges of the field.

Fig. 7.
Fig. 7.

(a) Fluorescence image of FAD at 440 excitation, (b) red, (c) green, and (d) blue channels.

Fig. 8.
Fig. 8.

Background image measured with the room lights and the MDC light source off.

Fig. 9.
Fig. 9.

Frosted cuvette images at (a) 345 nm and (b) 440 nm excitation.

Fig. 10.
Fig. 10.

Reflectance and fluorescence images of a patient with both CIN I and CIN II lesions. (a) shows the reflectance image and (b) shows the pathology section code used to map the pathology diagnosis to the fluorescence images. (c) and (d) show the fluorescence images taken at 345nm and 440 nm respectively. These images were taken after the application of acetic acid. (e) shows the results from the classification algorithm for SN versus HG. Blue areas indicate SN tissue and red areas indicate HG tissue. (f) shows the areas classified as HG overlaid over the reflectance image.

Tables (1)

Tables Icon

Table 1. Selected bandpass and longpass filters for the two different imaging fluorescence modes.

Metrics