Abstract

An electro-optic device applied as an optical beam deflector and switch at different wavelengths has been built and tested. The electro-optic device is based on domain-engineered lithium niobate (LiNbO3). In this paper, for the first time, its operation has been visualized by an imaging camera. The device has been characterized both at the visible wavelength (632.8 nm) and at a typical telecom wavelength (1532 nm). Furthermore, the device has been tested as an amplitude modulator in the mid-infrared region as well, at a wavelength of ~4.3 µm, where no Pockels cells are available. A detailed description of this device is given, and the experimental results are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, and W. P. Risk, �??Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3,�?? J. Lightwave Technol. 17, 462-465 (1999).
    [CrossRef]
  2. K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, �??Integrated electro-optic lens/scanner in a LiTaO3 single crystal,�?? Appl. Opt. 38, 1186-1190 (1999).
    [CrossRef]
  3. M. Yamada and M. Saitoh, �??Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystal,�?? Appl. Phys. Lett. 69, 3659-3661 (1996).
    [CrossRef]
  4. H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, �??Nanosecond response of Bragg deflectors in periodically poled LiNbO3,�?? Phot. Technol. Lett. 10, 1730-1732, (1998).
    [CrossRef]
  5. A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, �??Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,�?? Opt. Commun. 197, 193-200 (2001).
    [CrossRef]
  6. R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, �??Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNb O3,�?? Opt. Commun. 197, 201-207 (2001).
    [CrossRef]
  7. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  8. J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, �??Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,�?? Electron. Lett. 30, 894- 895 (1994).
    [CrossRef]
  9. V. Pruneri, J. Webjörn, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, �??Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,�?? Opt. Commun. 116, 159-162 (1995).
    [CrossRef]
  10. G. D. Miller, R. G. Batchko, M. M. Fejer, and R .L. Byer, �??Visible quasi-phase-matched harmonic generation by electric-field-poled lithium Niobate,�?? SPIE 2700, 34-36 (1996).
    [CrossRef]
  11. S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, �??Investigation on overpoled lithium niobate patterned crystal,�?? in ICO XIX, 19th Congress of the International Commission for Optics , Technical Digest, Italy, 25-31 August 2002, Part 2, pp. 735-736
  12. S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, �??Investigation on poling of lithium niobate patterned by interference lithography,�?? in Integrated Optical Devices: Fabrication and Testing, Proc. SPIE 4944 (2002).
  13. A. M. Prokhorov and Y. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990).
  14. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, �??Difference-frequency generation in PPLN at 4.25 µm: an analysis of sensitivity limits for DFG spectrometers,�?? Appl. Phys. B 70, 747-750 (2000).
    [CrossRef]
  15. D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, and P. De Natale, �??Low-power Lamb-dip spectroscopy of very weak CO2 transitions near 4.25 µm,�?? Opt. Lett. 27, 1256-1258 (2002).
    [CrossRef]
  16. M. Reich, F. Korte, C. Fallnich, H. Welling, and A. Tunnermann �??Electrode geometries for periodic poling of ferroelectric materials,�?? Opt. Lett. 23, 1817-1819 (1998).
    [CrossRef]
  17. I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, �??Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,�?? Appl. Phys. Lett. 74, 1487-1488 (1999).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, �??Difference-frequency generation in PPLN at 4.25 µm: an analysis of sensitivity limits for DFG spectrometers,�?? Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, �??Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,�?? Appl. Phys. Lett. 74, 1487-1488 (1999).
[CrossRef]

M. Yamada and M. Saitoh, �??Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystal,�?? Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Electron. Lett. (1)

J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, �??Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,�?? Electron. Lett. 30, 894- 895 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (3)

V. Pruneri, J. Webjörn, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, �??Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,�?? Opt. Commun. 116, 159-162 (1995).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, �??Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,�?? Opt. Commun. 197, 193-200 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, �??Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNb O3,�?? Opt. Commun. 197, 201-207 (2001).
[CrossRef]

Opt. Lett. (2)

Phot. Technol. Lett. (1)

H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, �??Nanosecond response of Bragg deflectors in periodically poled LiNbO3,�?? Phot. Technol. Lett. 10, 1730-1732, (1998).
[CrossRef]

Other (4)

G. D. Miller, R. G. Batchko, M. M. Fejer, and R .L. Byer, �??Visible quasi-phase-matched harmonic generation by electric-field-poled lithium Niobate,�?? SPIE 2700, 34-36 (1996).
[CrossRef]

S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, �??Investigation on overpoled lithium niobate patterned crystal,�?? in ICO XIX, 19th Congress of the International Commission for Optics , Technical Digest, Italy, 25-31 August 2002, Part 2, pp. 735-736

S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, �??Investigation on poling of lithium niobate patterned by interference lithography,�?? in Integrated Optical Devices: Fabrication and Testing, Proc. SPIE 4944 (2002).

A. M. Prokhorov and Y. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990).

Supplementary Material (2)

» Media 1: AVI (262 KB)     
» Media 2: AVI (235 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Electrical circuit employed for poling lithium niobate samples.

Fig. 2.
Fig. 2.

Optical micrograph of the interface between reversed domains as revealed by an acid mixture (HF:HNO3).

Fig. 3.
Fig. 3.

Schematic setup employed to characterize the domain engineered device.

Fig. 4.
Fig. 4.

Schematic geometry for the beam deflector.

Fig. 5.
Fig. 5.

Transmitted angle as function of the applied voltage, for different incident angles at the wavelength of 632.8 nm.

Fig. 6.
Fig. 6.

Comparison between the simulated and measured shift of the transmitted optical beam for three different values of the input angle in the visible range.

Fig. 7.
Fig. 7.

Optical field distribution at a distance of 20 cm from the device, for three different values of the applied voltage at visible range.

Fig. 8.
Fig. 8.

(262 KB) Movie to illustrate the scanner functionality of the domain-engineered-based device.

Fig. 9.
Fig. 9.

Shift of the transmitted optical beam evaluated at telecom wavelength (λ=1532 nm).

Fig. 10.
Fig. 10.

Schematic of the interaction between the optical beam and the interface for the switch device.

Fig. 11.
Fig. 11.

(a) Optical reflected power both for s- and p- polarization as function of the applied voltage. (b) Optical transmitted power for s- polarization function of the applied voltage.

Fig. 12.
Fig. 12.

(235 KB) Movie to illustrate the TIR functionality of the domain-engineered-based device at the visible wavelength of 632.8 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin θ TIR = n Δ n n + Δ n
Δ n = 1 2 r 33 n e 3 V d
Δ x = tg ( θ out ) · d θ out · d
θ out = sin 1 [ ( n Δ n ) 1 ( n + Δ n n Δ n ) 2 [ 1 ( sin θ inp n + Δ n ) 2 ] ]

Metrics