Abstract

Optical modes for the surface-controlled direct-view single-polarizer reflective BTN (bistable twisted nematic) LCD (liquid-crystal display) are derived with the Jones matrix method. The modes show excellent brightness and high contrast ratio. By use of a quarter-wave retardation film in the optical configuration, the contrast can be increased.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. Dozov, P. Martinot-Lagarde, S. Lamarque-Forget, D. Stoenescu, J. Angelé, R. Vercelletto, B. Pécout, and A. Bossier, �??Recent improvements of bistable nematic displays switched by anchor breaking (BiNem.),�?? SID Symp. Dig. 32, 224-227 (2001).
    [CrossRef]
  2. J. X. Guo, Z. G. Meng, M. Wong, and H. S. Kwok, �??Three-terminal bistable twisted nematic liquid crystal displays,�?? Appl. Phys. Lett. 77, 3716-3718 (2000).
    [CrossRef]
  3. D. W. Berreman and W. R. Heffner, �??New bistable cholesteric liquid crystal display,�?? Appl. Phys. Lett. 37, 109-111 (1980).
    [CrossRef]
  4. M. Giocondo, I. Llelidis, I. Dozov, and G. Durand, �??Write and erase mechanism of surface controlled bistable nematic pixel,�?? Eur. Phys. J. AP 5, 227-230 (1999).
    [CrossRef]
  5. T. Qian, Z. Xie, H. S. Kwok, and P. Sheng, �??Dynamic flow, broken surface anchoring and switching bistability in three-terminal twisted nematic liquid crystal displays,�?? J. Appl. Phys. 90, 3121-3123 (2001).
    [CrossRef]
  6. J. X. Guo and H. S. Kwok, �??Optical Optimisation of Surface-Controlled Bistable Twisted Nematic Liquid Crystal Displays,�?? in Proceedings of the 20th IDRC 20, 241-243 (2000).

Appl. Phys. Lett. (2)

J. X. Guo, Z. G. Meng, M. Wong, and H. S. Kwok, �??Three-terminal bistable twisted nematic liquid crystal displays,�?? Appl. Phys. Lett. 77, 3716-3718 (2000).
[CrossRef]

D. W. Berreman and W. R. Heffner, �??New bistable cholesteric liquid crystal display,�?? Appl. Phys. Lett. 37, 109-111 (1980).
[CrossRef]

Eur. Phys. J. (1)

M. Giocondo, I. Llelidis, I. Dozov, and G. Durand, �??Write and erase mechanism of surface controlled bistable nematic pixel,�?? Eur. Phys. J. AP 5, 227-230 (1999).
[CrossRef]

J. Appl. Phys. (1)

T. Qian, Z. Xie, H. S. Kwok, and P. Sheng, �??Dynamic flow, broken surface anchoring and switching bistability in three-terminal twisted nematic liquid crystal displays,�?? J. Appl. Phys. 90, 3121-3123 (2001).
[CrossRef]

SID Symp. Dig. (1)

I. Dozov, P. Martinot-Lagarde, S. Lamarque-Forget, D. Stoenescu, J. Angelé, R. Vercelletto, B. Pécout, and A. Bossier, �??Recent improvements of bistable nematic displays switched by anchor breaking (BiNem.),�?? SID Symp. Dig. 32, 224-227 (2001).
[CrossRef]

Other (1)

J. X. Guo and H. S. Kwok, �??Optical Optimisation of Surface-Controlled Bistable Twisted Nematic Liquid Crystal Displays,�?? in Proceedings of the 20th IDRC 20, 241-243 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometry of the direct-view single-polarizer reflective BTN-LCD.

Fig. 2.
Fig. 2.

Calculated reflectance spectra of the two stable twist states (ϕ1=-5.7° dashed and ϕ2=174.3° solid) of mode 1-1.

Fig. 3.
Fig. 3.

Reflectance spectra of the two stable twist states (0° dashed and 180° solid) with inner quarter-wave retardation film for α=0° and ψ=45° with Δnd=558 nm.

Fig. 4.
Fig. 4.

Reflectance spectra of the two stable twist states (0° dashed and 180° solid) with outer quarter-wave retardation film for α=-1.3° and ψ=45° with Δnd=137.5 nm.

Tables (2)

Tables Icon

Table 1. Optical Modes with Luminous Contrast Ratio >15 for General Twist Angles

Tables Icon

Table 2. Optical Modes with Luminous Contrast Ratio > 10 for Fixed Twist Angles 0° and 180°

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R = V M ˜ M V 2 ,
M = ( cos X i Γ sin X 2 X ϕ sin X X ϕ sin X X cos X + i Γ sin X 2 X ) ,
V = ( cos α sin α ) , V = ( cos α sin α ) .
R = 1 2 { [ cos 2 X + ϕ 2 sin 2 X X 2 Γ 2 4 sin 2 X X 2 ] 2 + [ Γ sin X X ( cos 2 α cos X + sin 2 α ϕ sin X X ) ] 2 } ,
R Lum = 380 780 R ( α , ϕ , Γ ) f ( λ ) D ( λ ) d λ 380 780 f ( λ ) D ( λ ) d λ
R = V M ~ W ~ W M V 2 ,
M = ( cos ϕ sin ϕ sin ϕ cos ϕ ) ( cos X i Γ sin X 2 X ϕ sin X X ϕ sin X X cos X + i Γ sin X 2 X ) ,
W = ( cos ψ sin ψ sin ψ cos ψ ) ( e i π 4 e i π 4 ) ( cos ψ sin ψ sin ψ cos ψ ) .
R = V W M M ˜ W ˜ V 2 .

Metrics