Abstract

A new technique and apparatus design for compensation of first-, second-, and higher-order polarization-mode dispersion (PMD) is proposed. Rigorous simulations show that the effects of the high-PMD long-haul fiber are dynamically mitigated or minimized and that the data are recovered from the distorted signals. The technique uses a real-time signal-monitoring and feedback method in the design of the PMD compensator that consists of a combination of polarization-based optical components. The resulting apparatus will enhance the transmission quality, extend the reach of current high-bit-rate (OC-192) optical signal transport, and enable the next-generation ultrahigh-bit-rate optical signals (OC-768 and beyond). The module and method provide a dynamically reconfigurable functional control to mitigate the influence of high-PMD fiber on high-bit-rate optical data. It can be packaged into a box or board/card or with other functional blocks (MUX/DEMUX, optical amplifiers, and the like) at the optical network nodes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Francia, F. Bruyere, D. Penninckx, and M. Chbat, �??PMD second-order effects on pulse propagation in single-mode optical fibers,�?? IEEE Photon. Tech. Lett. 10, 1739-1741 (1998).
    [CrossRef]
  2. B. W. Hakki, �??Polarization mode dispersion compensation by phase diversity detection,�?? IEEE Photon. Lett. 9, 121-123 (1997).
    [CrossRef]
  3. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, �??Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers,�?? J. Lightwave Technol. 17, 1602-1616 (1999).
    [CrossRef]
  4. G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnick, �??Probability densities of second order PMD including polarization dependent chromatic dispersion,�?? IEEE Photon. Technol. Lett. 12, 293-295 (2000).
    [CrossRef]
  5. R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, �??Polarization mode dispersion compensation in WDM systems,�?? IEEE Photon. Technol. Lett. 13, 1370-1372 (2001).
    [CrossRef]
  6. N. Zou, M. Yoshida, Y. Namihira, and H. Ito, �??Measurement of polarization mode dispersion based on optical frequency domain reflectometry technique,�?? in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper ThA1, pp. 63-65.
  7. C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, �??Fading in lightwave systems due to polarization mode dispersion,�?? IEEE Photon. Technol. Lett. 3, 68-70 (1991).
    [CrossRef]
  8. C. D. Poole and T. E. Darcie , �??Distortion related to polarization mode dispersion in analogue lightwave systems�??, J. Lightwave Technol. 11, 1749-1759 (1993).
    [CrossRef]
  9. Y. Namihara, T. Kawazawa, and H. Taga, �??Polarization effects on BER degradation at 10 Gb/s in IM-DD 1520 km optical amplifier systems,�?? Electron. Lett. 29, 1654-1655 (1993).
    [CrossRef]
  10. R. Khosravani, I. T. Lima, Jr., P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Menyuk, �??Time and frequency domain characteristics of polarization mode dispersion emulators,�?? IEEE Photon. Technol. Lett. 13, 127-129 (2001).
    [CrossRef]
  11. M. Karlsson, �??Polarization mode dispersion mitigation-performance of various approaches,�?? in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), papers WI 1 and WI 2-WI 7.
  12. L. T. Lima, Jr., R. Khosravani, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Menyuk, �??Polarization mode dispersion emulatorin Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper ThB4- 1, pp. 31-33.
  13. J. N. Damask, �??A programmable polarization-mode dispersion emulator for systematic testing of 10 Gb/s PMD compensator�?? (OFC2000) ThB3-1, pp. 28-30.
  14. Ishikawa, H. Ooi, and Y. Akiyama, �??Automatic PMD compensation in 40-Gbit transmission,�?? in Optical Fiber Communication Conference (OFC 1999) (Optical Society of America, Washington, D.C., 1999), paper WE5, pp. 86-88.
  15. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, C. Glingener, C. Scheerer, A. Schöpflin, and G. Fischer, �??Polarization mode dispersion compensation at 20 Gbit/s with fiber-based distributed equalizer,�?? Electron. Lett. 34, 2421-2422 (1998).
    [CrossRef]
  16. Virtual Photonics, Inc. (VPI), <a href="http://www.virtualphotonics.com">http://www.virtualphotonics.com</a>
  17. M.Y. A. Raja et al. �??PMD-control devices using highly-birefringent crystals and plastics [unpublished].

Electron. Lett. (2)

Y. Namihara, T. Kawazawa, and H. Taga, �??Polarization effects on BER degradation at 10 Gb/s in IM-DD 1520 km optical amplifier systems,�?? Electron. Lett. 29, 1654-1655 (1993).
[CrossRef]

R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, C. Glingener, C. Scheerer, A. Schöpflin, and G. Fischer, �??Polarization mode dispersion compensation at 20 Gbit/s with fiber-based distributed equalizer,�?? Electron. Lett. 34, 2421-2422 (1998).
[CrossRef]

IEEE Photon. Lett. (1)

B. W. Hakki, �??Polarization mode dispersion compensation by phase diversity detection,�?? IEEE Photon. Lett. 9, 121-123 (1997).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

C. Francia, F. Bruyere, D. Penninckx, and M. Chbat, �??PMD second-order effects on pulse propagation in single-mode optical fibers,�?? IEEE Photon. Tech. Lett. 10, 1739-1741 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, �??Fading in lightwave systems due to polarization mode dispersion,�?? IEEE Photon. Technol. Lett. 3, 68-70 (1991).
[CrossRef]

G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnick, �??Probability densities of second order PMD including polarization dependent chromatic dispersion,�?? IEEE Photon. Technol. Lett. 12, 293-295 (2000).
[CrossRef]

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, �??Polarization mode dispersion compensation in WDM systems,�?? IEEE Photon. Technol. Lett. 13, 1370-1372 (2001).
[CrossRef]

R. Khosravani, I. T. Lima, Jr., P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Menyuk, �??Time and frequency domain characteristics of polarization mode dispersion emulators,�?? IEEE Photon. Technol. Lett. 13, 127-129 (2001).
[CrossRef]

J. Lightwave Technol. (2)

Other (7)

Virtual Photonics, Inc. (VPI), <a href="http://www.virtualphotonics.com">http://www.virtualphotonics.com</a>

M.Y. A. Raja et al. �??PMD-control devices using highly-birefringent crystals and plastics [unpublished].

N. Zou, M. Yoshida, Y. Namihira, and H. Ito, �??Measurement of polarization mode dispersion based on optical frequency domain reflectometry technique,�?? in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper ThA1, pp. 63-65.

M. Karlsson, �??Polarization mode dispersion mitigation-performance of various approaches,�?? in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), papers WI 1 and WI 2-WI 7.

L. T. Lima, Jr., R. Khosravani, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Menyuk, �??Polarization mode dispersion emulatorin Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper ThB4- 1, pp. 31-33.

J. N. Damask, �??A programmable polarization-mode dispersion emulator for systematic testing of 10 Gb/s PMD compensator�?? (OFC2000) ThB3-1, pp. 28-30.

Ishikawa, H. Ooi, and Y. Akiyama, �??Automatic PMD compensation in 40-Gbit transmission,�?? in Optical Fiber Communication Conference (OFC 1999) (Optical Society of America, Washington, D.C., 1999), paper WE5, pp. 86-88.

Supplementary Material (1)

» Media 1: AVI (1418 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Block diagram of the transmission link including the PMD compensator.

Fig. 2.
Fig. 2.

PMD emulator used in the system simulation.

Fig. 3.
Fig. 3.

PMD measurement circuit schematic.

Fig. 4.
Fig. 4.

Intensity of the half-bit (20 GHz) component and the PMD coefficient relationship for a 40 Gb/s signal. The deviation from monotonic decreasing behavior is peculiar for OC-768 and was not present for 10 and 20 Gb/s. The origin of this deviation around 38 ps (cumulative PMD) is not clear but we suspect it arises from second- or higher-order effects, which become more severe for high-bit-rate signals as the bit period becomes short.

Fig. 5
Fig. 5

Optical system simulation to show the effect of the polarization rotation on the 40 Gb/s received signal.

Fig. 6.
Fig. 6.

Eye-diagram of the input signal.

Fig. 7.
Fig. 7.

Eye-diagram of a 40 Gb/s signal transported through a birefringent fiber with an assumed ultralow attenuation coefficient. First column, accumulated PMD; second column, eye pattern of the transported signal; third column, eye pattern with PMD compensation using control of input SOP and the high-bi-fi crystal.

Fig. 8.
Fig. 8.

Movie demonstration (1452 KB) of dynamic first-order PMD mitigation in OC-192 (40 Gb/s) with rotation of birefringent crystal creating a variable delay and resulting correction of in the eye diagram.

Tables (1)

Tables Icon

Table 1. DGD values of the emulator and the corresponding values of the polarization rotation angles, at which optimum compensation was achieved.

Metrics