Abstract

We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at ≈804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M 2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. A. Clarkson, P. J. Hardman, and D. C. Hanna, �??High-power diode-bar end-pumped Nd:YLF laser at 1.053 µm,�?? Opt. Lett. 23, 1363-1365 (1998).
    [CrossRef]
  2. H. J. Eichler, J. Findeisen, B. Liu, A. A. Kaminskii, A. V. Butachin, and P. Peuser, �??Highly efficient diode-pumped 3-µm Er3+:BaY2F8 laser,�?? IEEE J. Quantum Electron. 3, 90-94 (1997).
    [CrossRef]
  3. A. A. Kaminskii, �??New room-temperature diode-laser-pumped efficient quasi-cw and cw single-mode laser based on monoclinic BaY2F8:Nd3+ crystal,�?? Phys. Stat. Sol. A 137, 61-63 (1993).
    [CrossRef]
  4. N. P. Barnes, K. E. Murray, A. Cassanho, K. M. Dinndorf, and H. P. Jenssen, �??Flashlamp pumped Nd:BaY2F8,�?? in OSA Proceedings on Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 (Optical Society of America, Washington, D.C., 1993), pp. 24-27.
  5. J. J. Zayhowski and J. Harrison, in Handbook of Photonics, M. C. Gupta, ed. (CRC Press, Boca Raton, Fla., 1997), pp. 326-392.
  6. A. Agnesi, A. Guandalini, G. Reali, E. Sani, A. Toncelli, and M. Tonelli, �??Spectroscopic analysis and diode pumped laser results of Nd: BaY2F8,�?? IEEE J. of Quantum Electron. (to be published).
  7. A. Agnesi and P. Uggetti, �??Measurement of thermal diffractive losses in end-pumped solid-state lasers,�?? Opt. Commun. 212, 371-376 (2002).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  9. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, �??Optimization in scaling fibercoupled laser-diode end-pumped lasers to higher power: influence of thermal effect,�?? IEEE J. Quantum Electron. 33, 1424-1429 (1997).
    [CrossRef]
  10. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, �??Scaling cw diode-end-pumped Nd:YAG lasers to high average powers,�?? IEEE J. Quantum Electron. 28, 997-1009 (1992).
    [CrossRef]
  11. E. J. Grace, G. H. C. New, and P. M. W. French, �??Simple ABCD matrix treatment for transversely varying saturable gain,�?? Opt. Lett. 26, 1776-1778 (2001).
    [CrossRef]
  12. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, �??Thermal beam distortions in endpumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,�?? IEEE J. Quantum Electron. 30, 1605-1615 (1994).
    [CrossRef]
  13. Y.-F. Chen, �??Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,�?? IEEE J. Quantum Electron. 35, 234-239 (1999).
    [CrossRef]

IEEE J. Quantum Electron. (5)

H. J. Eichler, J. Findeisen, B. Liu, A. A. Kaminskii, A. V. Butachin, and P. Peuser, �??Highly efficient diode-pumped 3-µm Er3+:BaY2F8 laser,�?? IEEE J. Quantum Electron. 3, 90-94 (1997).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, �??Optimization in scaling fibercoupled laser-diode end-pumped lasers to higher power: influence of thermal effect,�?? IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, �??Scaling cw diode-end-pumped Nd:YAG lasers to high average powers,�?? IEEE J. Quantum Electron. 28, 997-1009 (1992).
[CrossRef]

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, �??Thermal beam distortions in endpumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,�?? IEEE J. Quantum Electron. 30, 1605-1615 (1994).
[CrossRef]

Y.-F. Chen, �??Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,�?? IEEE J. Quantum Electron. 35, 234-239 (1999).
[CrossRef]

Opt. Commun. (1)

A. Agnesi and P. Uggetti, �??Measurement of thermal diffractive losses in end-pumped solid-state lasers,�?? Opt. Commun. 212, 371-376 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Stat. Sol. A (1)

A. A. Kaminskii, �??New room-temperature diode-laser-pumped efficient quasi-cw and cw single-mode laser based on monoclinic BaY2F8:Nd3+ crystal,�?? Phys. Stat. Sol. A 137, 61-63 (1993).
[CrossRef]

Other (4)

N. P. Barnes, K. E. Murray, A. Cassanho, K. M. Dinndorf, and H. P. Jenssen, �??Flashlamp pumped Nd:BaY2F8,�?? in OSA Proceedings on Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 (Optical Society of America, Washington, D.C., 1993), pp. 24-27.

J. J. Zayhowski and J. Harrison, in Handbook of Photonics, M. C. Gupta, ed. (CRC Press, Boca Raton, Fla., 1997), pp. 326-392.

A. Agnesi, A. Guandalini, G. Reali, E. Sani, A. Toncelli, and M. Tonelli, �??Spectroscopic analysis and diode pumped laser results of Nd: BaY2F8,�?? IEEE J. of Quantum Electron. (to be published).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Output power as a function of the absorbed input power. The slope efficiency η for each output coupler is given. The curve with the output coupler reflectivity R=90% was obtained eventually by pumping the crystal until some optical damage occurred.

Fig. 2.
Fig. 2.

Thermal focal length values measured in Nd:BaYF, Nd:YVO4 and numerical results.

Fig. 3.
Fig. 3.

Comparison between the intracavity passive loss values determined experimentally in Nd:BaYF, Nd:YVO4 and the numerical results. The total loss L is calculated as the sum of a background constant loss L 0(≈0.25% for Nd:BaYF and ≈0.1% for Nd:YVO4) and the power-dependent diffractive contribution Ld from Eq. (7).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P o = ( 1 R ) P sat 2 ( 1 R + L ) [ g 0 + ln ( R L ) ]
W p ( z ) = W p 0 + λ p M p 2 π n p W p 0 z z 0
Δ T ( r , z ) = ξ P abs 4 π K c α eff e α eff z ( 1 e α eff l ) { [ ( 1 r 2 W p 2 ) + ln ( r b 2 W p 2 ) ] Θ ( u ) + ln ( r b 2 r 2 ) Θ ( u ) }
Δ φ ( r ) = φ ( r ) φ ( 0 ) γ r 2
φ ( r ) = 4 π λ χ 0 l Δ T ( r , z ) d z
L d 4 w g 2 [ 0 r b ( Δ φ ) 2 e 2 r 2 w g 2 r dr ( 0 r b Δ φ e 2 r 2 w g 2 r dr ) 2 ]
f th = 2 π λ γ

Metrics