Abstract

A new technique for the measurement of the pulse-width of ultrashort optical pulses has been recently proposed[1]. I argue in this comment that such a technique is unable to get any temporal information on an ultrashort pulse, based on the absence of a time-non-stationary element in the proposed setup.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Xi, C. Zhou, E. Dai and L. Liu, �??Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect,�?? Opt. Express 10, 1099 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1099">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1099</a>
    [CrossRef] [PubMed]
  2. V. Wong and I.A. Walmsley, �??Linear Filter Analysis of Methods for Ultrashort Pulse Shape Measurements,�?? J. Opt. Soc. Am. B 12, 1491 (1995).
    [CrossRef]
  3. I.A. Walmsley and V. Wong, �??Characterization of the electric field of ultrashort optical pulses,�?? J. Opt. Soc. Am. B 13, 2453-2463 (1996).
    [CrossRef]
  4. C. Dorrer and M. Joffre, �??Characterization of the spectral phase of ultrashort optical pulses,�?? C. R. Acad. Sci. Paris 2 Série IV, 1415-1426 (2001).
  5. M.T. Kaufman, W.C. Banyai, A.A Godil and D.M. Bloom, �??Time-to-frequency converter for measuring picosecond optical pulses,�?? Appl. Phys. Lett. 64, 270-272 (1994).
    [CrossRef]
  6. S. Prein, S. Diddams and J.C. Diels, �??Complete characterization of femtosecond pulses using an allelectronic detector,�?? Opt. Commun. 123, 567-573 (1996).
    [CrossRef]
  7. J. Debeau, B. Kowalski and R. Boittin, �??Simple method for the complete characterization of an optical pulse,�?? Opt. Lett. 23, 1784-1786 (1998).
    [CrossRef]
  8. C . Dorrer and I. Kang, �??Simultaneous characterization of telecommunication optical pulses and modulators,�?? Opt. Lett. 27, 1315 (2002).
    [CrossRef]
  9. C. Dorrer and I. Kang, �??Highly sensitive direct femtosecond pulse measurements using electro-optic spectral shearing interferometry,�?? Postdeadline paper PDA 7, Conference on Lasers and Electro-Optics 2002 (2002).
  10. L. Lepetit, G. Chériaux and M . Joffre, �??Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,�?? J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  11. D.N. Fittinghoff, J.L. Bowie, J.N. Sweetser, R.T. Jennings, M.A. Krumbugel K.W. DeLong, R. Trebino,I.A. Walmsley, �??Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,�?? Opt. Lett. 21, 884 -1996).
    [CrossRef] [PubMed]
  12. P.R. Griffith and J.A. Haseth, �??Fourier-transform infrared spectrometry,�?? Chemical Analysis Vol. 83, Wiley Interscience, New-York (1986).

Appl. Phys. Lett.

M.T. Kaufman, W.C. Banyai, A.A Godil and D.M. Bloom, �??Time-to-frequency converter for measuring picosecond optical pulses,�?? Appl. Phys. Lett. 64, 270-272 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Prein, S. Diddams and J.C. Diels, �??Complete characterization of femtosecond pulses using an allelectronic detector,�?? Opt. Commun. 123, 567-573 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C. Dorrer and I. Kang, �??Highly sensitive direct femtosecond pulse measurements using electro-optic spectral shearing interferometry,�?? Postdeadline paper PDA 7, Conference on Lasers and Electro-Optics 2002 (2002).

P.R. Griffith and J.A. Haseth, �??Fourier-transform infrared spectrometry,�?? Chemical Analysis Vol. 83, Wiley Interscience, New-York (1986).

C. Dorrer and M. Joffre, �??Characterization of the spectral phase of ultrashort optical pulses,�?? C. R. Acad. Sci. Paris 2 Série IV, 1415-1426 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ˜ OUTPUT ( ω ) = E ˜ INPUT ( ω ) R ˜ ( ω )
S = + E OUTPUT ( t ) 2 dt
S = + E ˜ OUTPUT ( ω ) 2 2 π = + E ˜ INPUT ( ω ) 2 R ˜ ( ω ) 2 2 π

Metrics