Abstract

The effects of fiber structure on Rayleigh scattering were investigated in detail. Some step-index fibers such as GeO2- and F-doped silica-based fibers and total-internal-reflection photonic crystal fiber are examined. The Rayleigh scattering loss (RSL) depends on the fiber materials and index profiles, and different types of fiber have different dependencies on those parameters because of the different optical power confinement factors in every layer. On the basis of these results, the RSL can be optimized by adjusting the fiber structure or by selecting different materials.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Ito, Y. Asano, and S. Tanaka, �??Transmission characteristics and reliability of pure-SiO2-core single-mode fibers,�?? J. Lightwave Technol. 4, 1144-1150 (1986).
    [CrossRef]
  2. M. Tateda, M. Ohashi, K. Jajima, and K. Shiraki, �??Design of viscosity matched optical fibers,�?? Photon. Technol. Lett. 4, 1023-1025 (1992).
    [CrossRef]
  3. M. Ohashi, M. Tadeda, K. Shiraki, and K. Tajima, �??Imperfection loss reduction in viscosity-matched optical fibers,�?? Photon. Technol. Lett. 5, 1532-1535 (1993).
    [CrossRef]
  4. K. Tsujikawa, K. Tajima, and M. Ohashi, �??Rayleigh scattering reduction method for silica-based optical fiber,�?? J. Lightwave Technol. 18, 1528-1532 (2000).
    [CrossRef]
  5. K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, �??Scattering property of F and GeO2 codoped silica glasses,�?? Electron. Lett. 30, 351-352 (1994).
    [CrossRef]
  6. K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, �??Effect of thermal treatment on Rayleigh scattering in silica-based glasses,�?? Electron. Lett. 31, 1940-1941 (1995).
    [CrossRef]
  7. K. Tajima, �??Low-loss optical fibers realized by reduction of Rayleigh scattering loss,�?? in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 305-306.
  8. M. Ohashi, K. Shiraki, and K. Tajima, �??Optical loss property of silica-based single-mode fibers,�?? J. Lightwave Technol. 10, 539-543 (1992).
    [CrossRef]
  9. M.E. Lines, �??Scattering losses in optic fiber materials (I. A new parametrization),�?? J. Appl. Phys. 55, 4052-4057 (1984).
    [CrossRef]
  10. P. Guenot, P. Nouchi, and B. Poumellec, �??Influence of drawing temperature on light scattering properties of single-mode fibers,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. 84-86.
  11. M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, �??Improved model for OH absorption in optical fibers,�?? J. Lightwave Technol. 18, 1536-1540 (1990).
    [CrossRef]
  12. A.W. Snyder, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  13. G. Cancellieri, Single Mode Optical Fibers (Pergamon, New York, 1991).
  14. T. Kato, M. Hirano, M. Onishi, and M. Nishimura, �??Ultra low nonlinearity low loss pure silica core fiber for long-haul WDM transmission,�?? in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 95-97.
  15. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, �??Properties of photonic crystal fiber and the effective index model,�?? J. Opt. Soc. Am A 15, 748-752 (1998).
    [CrossRef]
  16. S. E. Barkou, J. Broeng, and A. Bjarklev, �??Dispersion properties of photonic bandgap guiding fibers,�?? in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 117-119.
  17. A. Bjarklev, Jes Broeng, Kim Dridi, and Stig E. Barkou, �??Dispersion properties of photonic crystal fibres,�?? in European Conference on Optical Communication (Madrid, Spain, 1998), pp. 135-136.
  18. T. A. Birks, J. C. Knight, and P. St. J. Russel, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  19. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, �??The analogy between photonic crystal fibres and step index fibres,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. 114-116.
  20. L. Farr, J.C. Knight, B.J. Mangan, and P.J. Roberts, �??Low loss photonic crystal fibre,�?? in European Conference on Optical Communication (Copenhagen, Denmarak, 2002), PD1.3.
  21. K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, �??Low loss photonic crystal fibers,�?? in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 523-524.
  22. K. Nagayama, T. Saitoh, M. Kahui, K. Kawasaki, M. Matsui, H. Takamizawa, and H. Miyaki, �??Ultra low loss (0.151dB/km) fiber and its impact on submarine transmission systems,�?? in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline papers, FA10.
  23. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, �??Novel hole-assisted lightguided fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,�?? in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), PD5.
  24. K. Tajima, M. Ohashi, K. Shiraki, M. Tateda, and S. Shibata, �??Low Rayleigh scattering P2O5-F-SiO2 glasses,�?? J. Lightwave Technol. 10, 1532-1535 (1992).
    [CrossRef]

Electron. Lett.

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, �??Scattering property of F and GeO2 codoped silica glasses,�?? Electron. Lett. 30, 351-352 (1994).
[CrossRef]

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, �??Effect of thermal treatment on Rayleigh scattering in silica-based glasses,�?? Electron. Lett. 31, 1940-1941 (1995).
[CrossRef]

J. Appl. Phys.

M.E. Lines, �??Scattering losses in optic fiber materials (I. A new parametrization),�?? J. Appl. Phys. 55, 4052-4057 (1984).
[CrossRef]

J. Lightwave Technol.

K. Tsujikawa, K. Tajima, and M. Ohashi, �??Rayleigh scattering reduction method for silica-based optical fiber,�?? J. Lightwave Technol. 18, 1528-1532 (2000).
[CrossRef]

M. Ohashi, K. Shiraki, and K. Tajima, �??Optical loss property of silica-based single-mode fibers,�?? J. Lightwave Technol. 10, 539-543 (1992).
[CrossRef]

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Ito, Y. Asano, and S. Tanaka, �??Transmission characteristics and reliability of pure-SiO2-core single-mode fibers,�?? J. Lightwave Technol. 4, 1144-1150 (1986).
[CrossRef]

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, �??Improved model for OH absorption in optical fibers,�?? J. Lightwave Technol. 18, 1536-1540 (1990).
[CrossRef]

K. Tajima, M. Ohashi, K. Shiraki, M. Tateda, and S. Shibata, �??Low Rayleigh scattering P2O5-F-SiO2 glasses,�?? J. Lightwave Technol. 10, 1532-1535 (1992).
[CrossRef]

J. Opt. Soc. Am A

J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, �??Properties of photonic crystal fiber and the effective index model,�?? J. Opt. Soc. Am A 15, 748-752 (1998).
[CrossRef]

Opt. Lett.

Optical Fiber Communication Conference

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, �??The analogy between photonic crystal fibres and step index fibres,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. 114-116.

K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, �??Low loss photonic crystal fibers,�?? in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 523-524.

K. Nagayama, T. Saitoh, M. Kahui, K. Kawasaki, M. Matsui, H. Takamizawa, and H. Miyaki, �??Ultra low loss (0.151dB/km) fiber and its impact on submarine transmission systems,�?? in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Postdeadline papers, FA10.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, �??Novel hole-assisted lightguided fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,�?? in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), PD5.

S. E. Barkou, J. Broeng, and A. Bjarklev, �??Dispersion properties of photonic bandgap guiding fibers,�?? in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 117-119.

K. Tajima, �??Low-loss optical fibers realized by reduction of Rayleigh scattering loss,�?? in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 305-306.

P. Guenot, P. Nouchi, and B. Poumellec, �??Influence of drawing temperature on light scattering properties of single-mode fibers,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), pp. 84-86.

T. Kato, M. Hirano, M. Onishi, and M. Nishimura, �??Ultra low nonlinearity low loss pure silica core fiber for long-haul WDM transmission,�?? in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 95-97.

Photon. Technol. Lett.

M. Tateda, M. Ohashi, K. Jajima, and K. Shiraki, �??Design of viscosity matched optical fibers,�?? Photon. Technol. Lett. 4, 1023-1025 (1992).
[CrossRef]

M. Ohashi, M. Tadeda, K. Shiraki, and K. Tajima, �??Imperfection loss reduction in viscosity-matched optical fibers,�?? Photon. Technol. Lett. 5, 1532-1535 (1993).
[CrossRef]

Other

A. Bjarklev, Jes Broeng, Kim Dridi, and Stig E. Barkou, �??Dispersion properties of photonic crystal fibres,�?? in European Conference on Optical Communication (Madrid, Spain, 1998), pp. 135-136.

A.W. Snyder, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

G. Cancellieri, Single Mode Optical Fibers (Pergamon, New York, 1991).

L. Farr, J.C. Knight, B.J. Mangan, and P.J. Roberts, �??Low loss photonic crystal fibre,�?? in European Conference on Optical Communication (Copenhagen, Denmarak, 2002), PD1.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Refractive-index profile of G652 fiber.

Fig. 2.
Fig. 2.

Relationship between a and RSL for SMF.

Fig. 3.
Fig. 3.

Relationship between Δ and RSL for SMF.

Fig. 4.
Fig. 4.

Refractive-index profile of PSCF

Fig. 5.
Fig. 5.

Relationship between a and RSL for PSCF.

Fig. 6.
Fig. 6.

Relationship between Δ and RSL for PSCF.

Fig. 7.
Fig. 7.

Derivation of RSC to Δ for PSCF.

Fig. 8.
Fig. 8.

TIR PCF cross section.

Fig. 9.
Fig. 9.

Effective refractive-index profile of TIR PCF.

Fig. 10.
Fig. 10.

Relationship between D and RSL for PCF.

Fig. 11.
Fig. 11.

Relationship between d/D and RSL for PCF.

Fig. 12.
Fig. 12.

Power confinement factor in the core region.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

α = α R + α IM + α OH + α IR + α UV + α im ,
α R = 1 λ 4 0 + A ( r ) P ( r ) r d r 0 + P ( r ) r d r .
A ¯ 0 + A ( r ) P ( r ) r d r 0 + P ( r ) r d r .
A ( r ) = A 0 ( 1 + 0.62 [ GeO 2 ] + 0.60 [ F ] 2 + 0.44 [ GeO 2 ] [ F ] 2 ) ,
Δ ( r ) = C 0 D ( r ) + C 1 ,
A ( r ) = { A 0 ( 1 + 41 Δ ( r ) ) for F-doped glass A 0 ( 1 + 44 Δ ( r ) ) for GeO 2 -doped glass .
A ¯ = 0 r 1 A 1 ( r ) P ( r ) r d r + r 1 r 2 A 2 ( r ) P ( r ) r d r + + r m 1 + A m ( r ) P ( r ) r d r 0 + P ( r ) r d r
= A 1 0 r 1 P ( r ) r d r 0 + P ( r ) r d r + A 2 r 1 r 2 P ( r ) r d r 0 + P ( r ) r d r + + A m r m 1 + P ( r ) r d r 0 + P ( r ) r d r i = 1 m A i Γ i ,
A ¯ = A 0 ( 1 + 44 Δ ) Γ 1 + A 0 ( 1 Γ 1 ) = A 0 ( 1 + 44 Δ Γ 1 ) .
Γ 1 0 2 π 0 a ( E × H ) · z ˆ r d r d φ 0 2 π 0 + ( E × H ) · z ˆ r d r d φ = β 2 k 0 2 n 0 2 k 0 2 n 1 2 k 0 2 n 0 2 [ 1 + J 0 2 ( U ) J 1 2 ( U ) ] ,
A ¯ = A 0 + 44 A 0 W 2 ( 1 2 Δ ) 2 k 0 2 n 0 2 a 2 [ 1 + J 0 2 ( U ) J 1 2 ( U ) ] ,
A ¯ = A 0 Γ 1 + A 0 ( 1 + 41 Δ + Δ ) Γ 2 + A 0 ( 1 + 41 Δ + ) Γ 3
A 0 [ 1 + 41 Δ + Δ ( 1 Γ 1 ) ] .
A ¯ = A 0 + 41 A 0 2 k 0 2 n 0 2 a 2 [ U 2 W 2 J 0 2 ( U ) J 1 2 ( U ) ] ,
A ¯ Δ = A ¯ U U Δ + A ¯ W W Δ ,
A ¯ U = 41 A 0 k 0 2 n 0 2 a 2 { U + W 2 J 0 ( U ) J 1 3 ( U ) [ J 1 2 ( U ) J 0 ( U ) J 2 ( U ) 2 + J 0 2 ( U ) 2 ] } ,
A ¯ W = 41 A 0 k 0 2 n 0 2 a 2 J 0 2 ( U ) J 1 2 ( U ) W .
U Δ = 1 2 U U 2 Δ = a 2 β U β Δ ,
W Δ = 1 2 W W 2 Δ = a 2 β W β Δ + k 0 2 n 0 2 a 2 W ,
Δ eff n 0 2 n eff 2 2 n 0 2 .
A ¯ = A 0 Γ 1 + A 2 ( 1 Γ 1 ) = A 2 Γ 1 ( A 2 A 1 ) ,

Metrics