Abstract

We report a technique for injection-seeding optical parametric generation (OPG) in periodically poled lithium niobate in which the wavelength of the seed is neither that of the signal nor of the idler waves; instead, it is the wavelength resulting from the sum-frequency mixing of the pump and signal waves. We show that pulsed OPG can be appropriately seeded in this way even if the sum-frequency process is not quasi-phase-matched if a pulsed laser is used as a seed, and if it is quasi-phase-matched even a low power (15 mW) HeNe beam can substantially reduce the bandwidth of the generated signal wave.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
    [CrossRef]
  2. Teunis W. Tukker, Cees Otto, and Jan Greve, “A narrow-bandwidth optical parametric oscillator,” Opt. Commun. 154, 83–86 (1998).
    [CrossRef]
  3. Chi-Sheng Yu and A. H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator,” J. Opt. Soc. Am. B 16, 2233–2238 (1999).
    [CrossRef]
  4. Yi Zhou, Zuyan Xu, Daoqun Deng, Yufei Kong, Xiang-An Zhu, and Zhizhong Yan, “Optical parametric system with a compound cavity and a grazing-incidence prism,” J. Opt. Soc. Am. B 14, 1496–1500 (1997).
    [CrossRef]
  5. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153 (1997).
    [CrossRef]
  6. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, “Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator,” Opt. Lett. 23, 1886–1888 (1998).
    [CrossRef]
  7. S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
    [CrossRef]
  8. Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  9. Walter R. Bosenberg, Jason I. Alexander, Lawrence E. Myers, and Richard W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
    [CrossRef]
  10. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  11. M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys 28, 1747–1763 (1995).
    [CrossRef]
  12. M. J. Missey, S. Russell, V. Dominic, R. G. Bachko, and K. L. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate,” Opt. Express 6, 186–195 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186
    [CrossRef] [PubMed]

2002 (1)

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

2000 (1)

1999 (2)

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[CrossRef]

Chi-Sheng Yu and A. H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator,” J. Opt. Soc. Am. B 16, 2233–2238 (1999).
[CrossRef]

1998 (3)

1997 (3)

1995 (2)

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys 28, 1747–1763 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

Alexander, Jason I.

Aniolek, K. W.

Ashworth, S. H.

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

Bachko, R. G.

Bisson, S. E.

Bosenberg, W. R.

Bosenberg, Walter R.

Byer, R. L.

Checkhlov, O. V.

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

Deng, Daoqun

Dominic, V.

Eckardt, R. C.

Fejer, M. M.

Fitzpatrick, J. A. J.

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

Galech, J.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153 (1997).
[CrossRef]

Gardiner, T. D.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153 (1997).
[CrossRef]

Greve, Jan

Teunis W. Tukker, Cees Otto, and Jan Greve, “A narrow-bandwidth optical parametric oscillator,” Opt. Commun. 154, 83–86 (1998).
[CrossRef]

Haidar, S.

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[CrossRef]

Houé, M.

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys 28, 1747–1763 (1995).
[CrossRef]

Ito, H.

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[CrossRef]

Jundt, Dieter H.

Kong, Yufei

Kulp, T. J.

Kung, A. H.

Milton, M. J. T.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153 (1997).
[CrossRef]

Missey, M. J.

Molero, F.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153 (1997).
[CrossRef]

Myers, L. E.

Myers, Lawrence E.

Otto, Cees

Teunis W. Tukker, Cees Otto, and Jan Greve, “A narrow-bandwidth optical parametric oscillator,” Opt. Commun. 154, 83–86 (1998).
[CrossRef]

Pierce, J. W.

Powers, P. E.

Richman, B. A.

Rosser, K. N.

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

Russell, S.

Schepler, K. L.

Townsend, P. D.

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys 28, 1747–1763 (1995).
[CrossRef]

Tukker, Teunis W.

Teunis W. Tukker, Cees Otto, and Jan Greve, “A narrow-bandwidth optical parametric oscillator,” Opt. Commun. 154, 83–86 (1998).
[CrossRef]

Wallace, Richard W.

Western, C. M.

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

Xu, Zuyan

Yan, Zhizhong

Yu, Chi-Sheng

Zhou, Yi

Zhu, Xiang-An

J. Modern Opt. (1)

O. V. Checkhlov, J. A. J. Fitzpatrick, K. N. Rosser, C. M. Western, and S. H. Ashworth, “An all solid-state narrow bandwidth optical parametric oscillator and its applications to the high resolution spectroscopy of free radicals,” J. Modern Opt. 49, 865–876 (2002).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys (1)

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys 28, 1747–1763 (1995).
[CrossRef]

Opt. Commun. (3)

Teunis W. Tukker, Cees Otto, and Jan Greve, “A narrow-bandwidth optical parametric oscillator,” Opt. Commun. 154, 83–86 (1998).
[CrossRef]

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153 (1997).
[CrossRef]

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig 1.
Fig 1.

Experimental setup. For the non-quasi-phase-matched indirect seed experiments a pulsed, tunable Rhodamine 6G dye laser was used as the seed and a 20 mm long, Λ = 28.5 µm as the nonlinear crystal, and for the quasi-phase-matched indirect seed experiments a 15 mW HeNe was used as the seed and a Λ1 = 11.5 µm, Λ2 = 29.9 µm as the nonlinear crystal.

Fig. 2.
Fig. 2.

Indirect seeding without quasi-phase-matching. a) Spectra of the tunable indirect seed. b) Spectra of the corresponding (color-coded) signal beams. The black curve is the spectrum of the signal obtained without the indirect seed beam..

Fig. 3.
Fig. 3.

Spectra of the signal beam at 83.5 °C, 86.2 °C, and 90.5 °C. The seed beam is blocked.

Fig. 4.
Fig. 4.

Indirect seeding with quasi-phase-matching. T= 86.2°C. Incident indirect seed power: 15mW.

Fig. 5.
Fig. 5.

Output signal energy vs. incident pump energy.

Fig. 6.
Fig. 6.

Normalized spectra of the indirectly-seeded signal beam at different pump energies. Resolution of the spectrum analyzer: 0.1 nm. T=86.2 °C. Incident indirect seed power: 15mW. The fine structure below this resolution limit is an artifact due to pulse-to-pulse fluctuations of the pump beam energy.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 λ p = 1 λ s + 1 λ i
n p λ p = n s λ s + n i λ i ± 2 π Λ ,
1 λ m = 1 λ s + 1 λ p .
Δ λ s λ s 2 λ p 2 Δ λ p .

Metrics