Abstract

We give the intensity fluctuation joint probability of the twin-beam quantum state, which was generated with an optical parametric oscillator operating above threshold. Then we present what to our knowledge is the first measurement of the intensity fluctuation conditional probability distributions of twin beams. The measured inference variance of twin beams 0.62±0.02, which is less than the standard quantum limit of unity, indicates inference with a precision better than that of separable states. The measured photocurrent variance exhibits a quantum correlation of as much as -4.9±0.2 dB between the signal and the idler.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, �??Observation of quantum noise reduction on twin laser beams,�?? Phys. Rev. Lett. 59, 2555-2558 (1987).
    [CrossRef] [PubMed]
  2. S. K. Choi, M. Vasilyev, and P. Kumar, �??Noiseless optical amplification of images,�?? Phys. Rev. Lett. 83, 1938-1941 (1999).
    [CrossRef]
  3. O. Aytur and P. Kumar, �??Pulsed twin beams of light,�?? Phys. Rev. Lett. 65, 1551-1554(1990).
    [CrossRef] [PubMed]
  4. Q. Pan, Y. Zhang, T. C. Zhang, C. D. Xie, and K. C. Peng, �??Experimental investigation of intensity difference squeezing using Nd:YAP laser as pump source,�?? J. Phys. D: Appl. Phys. 30, 1588-1590 (1997).
    [CrossRef]
  5. K.C. Peng, Q. Pan, H. Wang, Y. Zhang, H. Su, C.D. Xie, �??Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO,�?? Appl. Phys. B 66, 755-758 (1998).
    [CrossRef]
  6. J. R. Gao, F. Y. Cui, C. Y. Xue, C. D. Xie, K. C. Peng, �??Generation and application of twin beams from an optical parametric oscillator including an a-cut KTP crystal,�?? Opt. Lett. 23, 870-872 (1998).
    [CrossRef]
  7. H. Wang, Y. Zhang, Q. Pan, H. Su, A. Porzio, C. D. Xie, and K. C. Peng, �??Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter,�?? Phys. Rev. Lett. 82, 1414-1417 (1999).
    [CrossRef]
  8. D. T. Smithey, M.Beck, M.G. Raymer, and A. Faridani, �??Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,�?? Phys. Rev. Lett. 70, 1244-1247 (1993).
    [CrossRef] [PubMed]
  9. G. Breitenbach, S. Schiller, and J. Mlynek, �??Measurement of the quantum states of squeezed light,�?? Nature 387, 471-475 (1997).
    [CrossRef]
  10. M. Vasilyev, S. K. Choi, P. Kumar, G. M. D�??Ariano, �??Tomographic measurement of joint photon statistics of the twin-beam quantum state,�?? Phys. Rev. Lett. 84, 2354-2357 (2000).
    [CrossRef] [PubMed]
  11. Y. Zhang, K. Kasai, and M. Watanabe, �??Investigation of the photon-number statistics of twin beams by direct detection,�?? Opt. Lett. 27, 1244-1246 (2002).
    [CrossRef]
  12. D. T. Smithey, M. Beck, M. Belsley, and M. G. Raymer, �??Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,�?? Phys. Rev. Lett. 69, 2650-2653 (1992).
    [CrossRef] [PubMed]
  13. M. D. Reid, �??Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,�?? Phys, Rev. A 40, 913-923 (1989).
    [CrossRef]
  14. M. D. Reid, �??Inseparability criteria for demonstration of the Einstein-Podolsky-Rosen gedanken experiment,�?? Quant-ph/0103142.
  15. M. D. Reid, �??The Einstein-Podolsky-Rosen Paradox and Entanglement 1: Signatures of EPR correlations for continuous variables,�?? Quant-ph/0112038.
  16. K. Kasai and M. Watanabe, in 7th International Conference on Squeezed States and Uncertainty Relations, Boston, U.S.A., June 4-8, 2001.
  17. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, �??Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,�?? Phys. Rev. Lett. 68, 3663-3667 (1992).
    [CrossRef] [PubMed]
  18. Y. Zhang, H. Wang, X.Y. Li, J.T. Jing, C.D. Xie, and K.C. Peng, �??Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,�?? Phys. Rev. A 62, 023813 (2000).
    [CrossRef]
  19. Ch. Silberhorn, P. K. Lam, O. Wei�?, F. König, N. Korolkova, and G. Leuchs, �??Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the kerr nonlinearity in an optical fiber,�?? Phys. Rev. Lett. 86, 4267-4270 (2001).
    [CrossRef] [PubMed]
  20. W.P. Bowen, R. Schnabel, P.K. Lam, and T.C. Ralph, �??An experimental investigation of criteria for continuous variable entanglement,�?? Quant-ph/0209001.

Appl. Phys. B (1)

K.C. Peng, Q. Pan, H. Wang, Y. Zhang, H. Su, C.D. Xie, �??Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO,�?? Appl. Phys. B 66, 755-758 (1998).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

Q. Pan, Y. Zhang, T. C. Zhang, C. D. Xie, and K. C. Peng, �??Experimental investigation of intensity difference squeezing using Nd:YAP laser as pump source,�?? J. Phys. D: Appl. Phys. 30, 1588-1590 (1997).
[CrossRef]

Nature (1)

G. Breitenbach, S. Schiller, and J. Mlynek, �??Measurement of the quantum states of squeezed light,�?? Nature 387, 471-475 (1997).
[CrossRef]

Opt. Lett. (2)

Phys, Rev. A (1)

M. D. Reid, �??Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,�?? Phys, Rev. A 40, 913-923 (1989).
[CrossRef]

Phys. Rev. A (1)

Y. Zhang, H. Wang, X.Y. Li, J.T. Jing, C.D. Xie, and K.C. Peng, �??Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,�?? Phys. Rev. A 62, 023813 (2000).
[CrossRef]

Phys. Rev. Lett. (9)

Ch. Silberhorn, P. K. Lam, O. Wei�?, F. König, N. Korolkova, and G. Leuchs, �??Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the kerr nonlinearity in an optical fiber,�?? Phys. Rev. Lett. 86, 4267-4270 (2001).
[CrossRef] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, �??Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,�?? Phys. Rev. Lett. 68, 3663-3667 (1992).
[CrossRef] [PubMed]

M. Vasilyev, S. K. Choi, P. Kumar, G. M. D�??Ariano, �??Tomographic measurement of joint photon statistics of the twin-beam quantum state,�?? Phys. Rev. Lett. 84, 2354-2357 (2000).
[CrossRef] [PubMed]

D. T. Smithey, M. Beck, M. Belsley, and M. G. Raymer, �??Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light,�?? Phys. Rev. Lett. 69, 2650-2653 (1992).
[CrossRef] [PubMed]

H. Wang, Y. Zhang, Q. Pan, H. Su, A. Porzio, C. D. Xie, and K. C. Peng, �??Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter,�?? Phys. Rev. Lett. 82, 1414-1417 (1999).
[CrossRef]

D. T. Smithey, M.Beck, M.G. Raymer, and A. Faridani, �??Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,�?? Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, �??Observation of quantum noise reduction on twin laser beams,�?? Phys. Rev. Lett. 59, 2555-2558 (1987).
[CrossRef] [PubMed]

S. K. Choi, M. Vasilyev, and P. Kumar, �??Noiseless optical amplification of images,�?? Phys. Rev. Lett. 83, 1938-1941 (1999).
[CrossRef]

O. Aytur and P. Kumar, �??Pulsed twin beams of light,�?? Phys. Rev. Lett. 65, 1551-1554(1990).
[CrossRef] [PubMed]

Quant-ph/0112038 (1)

M. D. Reid, �??The Einstein-Podolsky-Rosen Paradox and Entanglement 1: Signatures of EPR correlations for continuous variables,�?? Quant-ph/0112038.

Quant-ph/0209001 (1)

W.P. Bowen, R. Schnabel, P.K. Lam, and T.C. Ralph, �??An experimental investigation of criteria for continuous variable entanglement,�?? Quant-ph/0209001.

Other (2)

K. Kasai and M. Watanabe, in 7th International Conference on Squeezed States and Uncertainty Relations, Boston, U.S.A., June 4-8, 2001.

M. D. Reid, �??Inseparability criteria for demonstration of the Einstein-Podolsky-Rosen gedanken experiment,�?? Quant-ph/0103142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. D1 and D2, detectors; PBS, polarizing beam splitter; LPF, low pass filters; G, amplifier; λ/2, Half-wave plate; rf (ψ) and rf(θ), rf local oscillators.

Fig. 2.
Fig. 2.

Record of noise trace of channel 1 for separable coherent state and signal of twin beams in a 100kHz bandwidth at 4MHz.

Fig. 3.
Fig. 3.

Measured joint probability distribution for twin beams (a) and separable state (b) with equal mean photon numbers, viewed in 3D and as contour plots.

Fig. 4.
Fig. 4.

Conditional probability distribution of separable state (a) and twin-beam state (b)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( x x i B ) 0 , if x μ i > δ .
P ( X X i B ) = P X X i B P ( X i B )

Metrics