## Abstract

We describe a methodology for quantitative image correction in OCT which includes procedures for correction of nonlinear axial scanning and non-telecentric scan patterns, as well as a novel approach for refraction correction in layered media based on Fermat’s principle. The residual spatial error obtained in layered media with a fan-beam hand-held probe was reduced from several hundred micrometers to near the diffraction and coherence-length limits.

© 2002 Optical Society of America

Full Article |

PDF Article
### Equations (12)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$y={f}_{\mathit{res},y}(x\text{'},y\text{'})=A\phantom{\rule{.2em}{0ex}}\mathrm{sin}\left(\mathrm{\pi \eta}\frac{y\text{'}}{d}\right)$$
(2)
$${f}_{\mathit{res},y}\left(x\text{'},\frac{d}{2}\right)=\frac{d}{2}$$
(3)
$$A=\frac{d}{2}{\mathrm{sin}}^{-1}\left(\frac{\mathrm{\pi \eta}}{2}\right).$$
(4)
$$x\text{'}={F}_{\mathit{res},x}\left(x,y\right)=x$$
(5)
$$y\text{'}={F}_{\mathit{res},y}\left(x,y\right)=\frac{d}{\mathrm{\pi \eta}}\mathrm{arcsin}\left(\frac{y}{A}\right),$$
(6)
$${\phi}_{h}\left(x,y\right)=\mathrm{arctan}\left(x/\left(D-y\right)\right),$$
(7)
$${L}_{h}\left(x,y\right)=D-\sqrt{{x}^{2}+{\left(D-y\right)}^{2}}.$$
(8)
$$x\text{'}={F}_{xh}\left(x,y\right)=\mathrm{arctan}\left(\frac{x}{D-y}\right)\bullet D$$
(9)
$$y\text{'}={F}_{yh}\left(x,y\right)=D-\sqrt{{x}^{2}+{\left(D-y\right)}^{2}}$$
(10)
$$L({P}_{1},..,{P}_{k},P)={L}_{h}\left({P}_{1}\right)+\sum _{i=1}^{k-1}{n}_{i}\mid {P}_{i}{P}_{i+1}\mid +{n}_{k}\mid {P}_{k}P\mid .$$
(11)
$$x\text{'}={F}_{x}({P}_{1},...,{P}_{k},P)={F}_{\mathrm{xh}}\left({P}_{1}\right),$$
(12)
$$\mathrm{y\text{'}}={F}_{y}({P}_{1},...,{P}_{k},P)=\text{D}-L({P}_{1},...,{P}_{k},P).$$