Abstract

This paper presents a complete methodology to perform fuel concentration measurements of Diesel sprays in isothermal conditions using the Planar Laser-Induced Fluorescence (PLIF) technique. The natural fluorescence of a commercial Diesel fuel is used with an excitation wavelength of 355 nm. The correction and calibration procedures to perform accurate measurements are studied. These procedures include the study of the fluorescence characteristics of the fuel as well as the correction of the laser sheet non–homogeneities and the losses due to Mie scattering, absorption and autoabsorption. The results obtained are compared with theoretical models and other experimental techniques.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Schihl, W. Bryzik and A. Atreya, �Analysis of current spray penetration models and proposal of a phenomenological cone penetration model,� SAE Paper 960773 (Society of Automotive Engineers, Warrendale, Pa., 1996).
  2. J. Arr�gle, J. V. Pastor and S. Ruiz, �The influence of injection parameters on Diesel spray characteristics,� SAE Paper 1999-01-0200 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  3. F. Payri, J. M. Desantes and J. Arr�gle, �Characterization of D.I. Diesel sprays in high density conditions,� SAE Paper 960774 (Society of Automotive Engineers, Warrendale, Pa., 1996).
  4. J. D. Naber and D. L. Siebers, �Effects of gas density and vaporization on penetration and dispersion of Diesel sprays,� SAE Paper 960034 (Society of Automotive Engineers, Warrendale, Pa., 1996).
  5. D. L. Siebers, �Liquid-phase fuel penetration in Diesel sprays,� SAE Paper 980809 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  6. J. V. Pastor, E. Encabo, and S. Ruiz, �New modelling approach for fast on-line calculations in sprays,� SAE Paper 2000-01-0287 (Society of Automotive Engineers, Warrendale, Pa., 2000).
  7. M. C. Jermy and D. A. Greenhalgh, �Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,� Appl. Phys. B 71, 703-710 (2000).
    [CrossRef]
  8. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, Amsterdam, 1996).
  9. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meinrburg, P. Monkhouse, H. Neckel, M. Shafer, K. P. Schindler, V. Sick, R. Suntz and J. Wolfrum, �Laser in situ monitoring of combustion processes,� Appl. Opt. 29, 4860-4872 (1990).
    [CrossRef] [PubMed]
  10. K. Kohse-H�inghaus, �Laser techniques for the quantitative detection of reactives intermediates in combustion systems,� Prog. Energy Combust. Sci. 20, 203-279 (1994).
    [CrossRef]
  11. C. Nan Yeh, T. Kamimoto, H. Kosaka and S. Kobori, �Quantitative measurements of 2D Fuel vapor concentration in a Transient Spray via Laser Induced Fluorescence Technique,� SAE Paper 941953 (Society of Automotive Engineers, Warrendale, Pa., 1994).
  12. J. Senda, T. Kanda, M. Kobayashi and H. Fujimoto, �Quantitative analysis of Fuel Vapor Concentration in Diesel spray by Exciplex Fluorescence Method,� SAE Paper 970796 (Society of Automotive Engineers, Warrendale, Pa., 1997).
  13. H. Zhao and N. Ladommatos, �Optical diagnostics for in-cylinder mixture formation measurements in IC engines,� Prog. Energy Combust. Sci. 24, 297-336 (1998).
    [CrossRef]
  14. A. A. Rotunno, M. Winter, G. M. Dobbs and L. A. Melton �Direct Calibration Procedures for Exciplex-Based Vapor/Liquid Visualization of Fuel Sprays,� Combust. Sci. and Tech. 71, 247-261 (1990).
    [CrossRef]
  15. J. M. Desantes, J. Arr�gle, J. V. Pastor, A. Delage, �Influence of the fuel characteristics on the injection process in a D.I. diesel engine,� SAE Transactions. Journal of Engines. 107, 1185-1195. (Society of Automotive Engineers, Warrendale, Pa., 1998).
  16. H. P. Fuchs and E. Winklhofer, �Diesel fuel spray visualization by laser induced fluorescence,� SAE Paper 914166 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  17. M. D. Barnes, W. B. Whitten and J. M. Ramsey, �Enhanced fluorescence yields through cavity quantumelectrodinamics effects in micro droplets,� J. Opt. Soc. Am. B 11, 1297-1924 (1994).
    [CrossRef]
  18. G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal and W. P. Acker, �Laser diagnostics for droplets characterization: application of morphology dependent resonances,� Prog. Energy Combust. Sci. 22, 163-188 (1996).
    [CrossRef]
  19. A. E. Siegman, Lasers (University Science Books, Mill Valley CA, 1986).
  20. N. L. Swanson, B. D. Billard and T. L. Gennaro, �Limits of optical transmission measurements with application to particle sizing techniques,� Appl. Opt. 38, 5887-5893 (1999).
    [CrossRef]
  21. R. Bazile and D. Stepowski, �Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,� Exp. in Fluids 20, 1-9 (1995).
    [CrossRef]
  22. R. Domann and Y. Hardalupas, �Evaluation of planar Doppler Sizing (PDS) technique,� Eight International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, (2000).
  23. I. B. Berlman, Handbook of fluorescence spectra of aromatic molecules (Academic Press, London, 1971).
  24. H. Sj�berg, G. Manneberg, and A. Cronhjort, �Long-working-distance microscope used for diesel injection spray imaging,� Opt. Eng. 35, 3591-3596 (1996).
    [CrossRef]
  25. H. C. van de Hulst, Light scattering by small particles (Dover Publications Inc., New York, 1981).
    [CrossRef]
  26. R. Abu-Gharbieh, J. L. Persson, M. F�rsth, A. Ros�n, A. Karlstr�m and T. Gustavsson, �Compensation method for attenuated planar laser images of optically dense sprays,� Appl. Opt. 39, 1260-1267 (2000).
    [CrossRef]
  27. J. V. Pastor, J. Arr�gle, A. Palomares, "Diesel spray image segmentation with a likelihood ratio test,� Appl. Opt. 40, 1-10 (2001).
    [CrossRef]
  28. T. Kamimoto, S. K. Ahn, Y. J. Chang, H. Kobayashi, S. Matsuoka, �Measurement of droplet-diameter and fuel concentration in a non-evaporating Diesel spray by means of an image analysis of shadow photographs,� SAE Paper 840276 (Society of Automotive Engineers, Warrendale, Pa., 1984).
  29. F. V. Tinaut, A. Melgar, F. Castro, M. L. S�nchez, B. Jim�nez, �A method to determine liquid spray concentration in non-stationary axisymmetric sprays,� Exp. in Fluids 23, 299-305 (1997).
    [CrossRef]
  30. A. Palomares, Image Analysis of Diesel Sprays (In spanish)., Ph.D. Thesis Universidad Polit�cnica de Valencia (2001).
  31. G. G. M. Stoffels, S. Stoks, N. Dam and J. J. ter Meulen, �Methods to correct planar laser-induced fluorescence distributions for local nonuniform laser attenuation,� Appl. Opt. 39, 5547-5559 (2000).

Appl. Opt.

Appl. Phys. B

M. C. Jermy and D. A. Greenhalgh, �Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,� Appl. Phys. B 71, 703-710 (2000).
[CrossRef]

Combust. Sci. and Tech.

A. A. Rotunno, M. Winter, G. M. Dobbs and L. A. Melton �Direct Calibration Procedures for Exciplex-Based Vapor/Liquid Visualization of Fuel Sprays,� Combust. Sci. and Tech. 71, 247-261 (1990).
[CrossRef]

Exp. in Fluids

R. Bazile and D. Stepowski, �Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,� Exp. in Fluids 20, 1-9 (1995).
[CrossRef]

F. V. Tinaut, A. Melgar, F. Castro, M. L. S�nchez, B. Jim�nez, �A method to determine liquid spray concentration in non-stationary axisymmetric sprays,� Exp. in Fluids 23, 299-305 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

H. Sj�berg, G. Manneberg, and A. Cronhjort, �Long-working-distance microscope used for diesel injection spray imaging,� Opt. Eng. 35, 3591-3596 (1996).
[CrossRef]

Prog. Energy Combust. Sci.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal and W. P. Acker, �Laser diagnostics for droplets characterization: application of morphology dependent resonances,� Prog. Energy Combust. Sci. 22, 163-188 (1996).
[CrossRef]

H. Zhao and N. Ladommatos, �Optical diagnostics for in-cylinder mixture formation measurements in IC engines,� Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

K. Kohse-H�inghaus, �Laser techniques for the quantitative detection of reactives intermediates in combustion systems,� Prog. Energy Combust. Sci. 20, 203-279 (1994).
[CrossRef]

SAE Paper 1999-01-0200

J. Arr�gle, J. V. Pastor and S. Ruiz, �The influence of injection parameters on Diesel spray characteristics,� SAE Paper 1999-01-0200 (Society of Automotive Engineers, Warrendale, Pa., 1999).

SAE Paper 2000-01-0287

J. V. Pastor, E. Encabo, and S. Ruiz, �New modelling approach for fast on-line calculations in sprays,� SAE Paper 2000-01-0287 (Society of Automotive Engineers, Warrendale, Pa., 2000).

SAE Paper 840276

T. Kamimoto, S. K. Ahn, Y. J. Chang, H. Kobayashi, S. Matsuoka, �Measurement of droplet-diameter and fuel concentration in a non-evaporating Diesel spray by means of an image analysis of shadow photographs,� SAE Paper 840276 (Society of Automotive Engineers, Warrendale, Pa., 1984).

SAE Paper 914166

H. P. Fuchs and E. Winklhofer, �Diesel fuel spray visualization by laser induced fluorescence,� SAE Paper 914166 (Society of Automotive Engineers, Warrendale, Pa., 1991).

SAE Paper 941953

C. Nan Yeh, T. Kamimoto, H. Kosaka and S. Kobori, �Quantitative measurements of 2D Fuel vapor concentration in a Transient Spray via Laser Induced Fluorescence Technique,� SAE Paper 941953 (Society of Automotive Engineers, Warrendale, Pa., 1994).

SAE Paper 960034

J. D. Naber and D. L. Siebers, �Effects of gas density and vaporization on penetration and dispersion of Diesel sprays,� SAE Paper 960034 (Society of Automotive Engineers, Warrendale, Pa., 1996).

SAE Paper 960773

P. Schihl, W. Bryzik and A. Atreya, �Analysis of current spray penetration models and proposal of a phenomenological cone penetration model,� SAE Paper 960773 (Society of Automotive Engineers, Warrendale, Pa., 1996).

SAE Paper 960774

F. Payri, J. M. Desantes and J. Arr�gle, �Characterization of D.I. Diesel sprays in high density conditions,� SAE Paper 960774 (Society of Automotive Engineers, Warrendale, Pa., 1996).

SAE Paper 970796

J. Senda, T. Kanda, M. Kobayashi and H. Fujimoto, �Quantitative analysis of Fuel Vapor Concentration in Diesel spray by Exciplex Fluorescence Method,� SAE Paper 970796 (Society of Automotive Engineers, Warrendale, Pa., 1997).

SAE Paper 980809

D. L. Siebers, �Liquid-phase fuel penetration in Diesel sprays,� SAE Paper 980809 (Society of Automotive Engineers, Warrendale, Pa., 1998).

SAE Transactions. Journal of Engines.

J. M. Desantes, J. Arr�gle, J. V. Pastor, A. Delage, �Influence of the fuel characteristics on the injection process in a D.I. diesel engine,� SAE Transactions. Journal of Engines. 107, 1185-1195. (Society of Automotive Engineers, Warrendale, Pa., 1998).

Other

R. Domann and Y. Hardalupas, �Evaluation of planar Doppler Sizing (PDS) technique,� Eight International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, (2000).

I. B. Berlman, Handbook of fluorescence spectra of aromatic molecules (Academic Press, London, 1971).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, Amsterdam, 1996).

H. C. van de Hulst, Light scattering by small particles (Dover Publications Inc., New York, 1981).
[CrossRef]

A. E. Siegman, Lasers (University Science Books, Mill Valley CA, 1986).

A. Palomares, Image Analysis of Diesel Sprays (In spanish)., Ph.D. Thesis Universidad Polit�cnica de Valencia (2001).

Supplementary Material (1)

» Media 1: MPG (1398 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental setup sketch. 1-Laser source, 2-lenses head, 3-laser sheet, 4-injector, 5-ICCD, 6-camera lens, 7-stereoscope

Fig. 2.
Fig. 2.

Fluorescence a) emission spectra at excitation wavelength of 355 nm, and b) time response of the fuel ELF-CEC RF73A 93

Fig. 3.
Fig. 3.

Fluorescence intensity calibration

Fig. 4.
Fig. 4.

a) Original and b) corrected laser sheet trace. The sheet enters in the y-axis direction

Fig. 5.
Fig. 5.

Laser pulse energy fluctuations

Fig. 6.
Fig. 6.

PLIF/Mie scattering image. Injection pressure = 30 MPa, gas density=30 Kg/m3, injection duration = 1400 μs.

Fig. 7.
Fig. 7.

(1.4 MB) PLIF movie of Diesel spray. Injection pressure = 30 MPa, gas density=30 Kg/m3 . The frame shown corresponds to 1400 μs ASOI.

Fig. 8.
Fig. 8.

Symmetry Ratio vs. time ASOI

Fig. 9.
Fig. 9.

Radial profiles with the different corrections. Injection pressure = 30 MPa, gas density=30 Kg/m3, injection duration = 1600 μs. a) 10 mm b) 30 mm from the nozzle exit

Fig. 10.
Fig. 10.

Radial profiles comparison. a) DIES, PLIF and light extinction method. b) FLUENT and PLIF. .Injection pressure = 30 MPa, gas density=30 Kg/m3, injection duration = 1400 μs.

Fig. 11.
Fig. 11.

Spray centerline concentration results. Injection pressure= a) 30 MPa, b) 70 MPa.

Fig. 12.
Fig. 12.

Comparison between amount of fuel injected as obtained from the integration of PLIF images (average of 100 images per instant; error bars correspond to ± the standard deviation) and the values from injection rate measurements.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I F = K I 0 ( 1 e α ρ L )
S F ( x , y ) = K optical system ( x , y ) ϕ ( x , y ) K autoabs ( x , y ) I 0 ( x , y ) ( 1 e α ρ L )
ϕ ( x , y ) = B 12 ( x , y ) A 21 ( x , y ) A 21 ( x , y ) + Q 21 ( x , y )
S F ( x , y ) = K optical system ( x , y ) ϕ ( x , y ) K autoabs ( x , y ) I 0 ( x , y ) ( α ρ L ) = K F ( x , y ) ρ ( x , y )
I ( x ) = I 0 exp [ 0 x ρ optical ( x ) d x ]
I ( x ) = I 0 exp ( α ρ L )
ρ E = ρ fuel V F V T
S F ( x , y ) = S F ( x , y ) exp ( α ρ L )
S F ( x , y ) = ( S F ( y ) ) max w ( y ) w ( y 1 )
CM laser sheet ( x , y ) = ( ( S F ( y ) exp ( α ρ L ) max S F ( x , y ) w ( y ) w ( y 1 ) )
CF sheetthickness ( x , y ) = t S w ( y ) while S w ( y ) < t
ρ Mie ( x , y ) = S Mie ( x , y ) s 0 ( y ) ρ 0 ( y ) 0 x S Mie ( x ) d x
S Mie new ( x , y ) = S Mie ( x , y ) exp [ ρ 0 ( y ) s 0 ( y ) 0 x S Mie new ( x ) d x ]
CF Mie scattering ( x , y ) = ( exp [ 0 x ρ Mie ( x , y ) d x ] )
S F Corrected ( x , y ) = CM laser sheet CM sheer thickness CM Mie scattering exp ( α ρ E ( x , y 1 ) L ) S F ( x . y )

Metrics