Abstract

A negative-tone inorganic–organic hybrid SiO2:TiO2 glass is investigated for fabrication of refractive microlenses. This sol-gel material enjoys an advantage over materials used in conventional photoresist-based fabrication techniques in that it lends itself to a single-step etching-free process. The application of a high-energy beam-sensitive (HEBS) mask provides a reliable and simple method for fabrication of three-dimensional micro-optical elements with a single UV exposure. The technique of using the sol-gel material with the HEBS gray-scale mask has considerable potential for low-cost mass production of continuous-phase-level diffractive optical elements and micro-optical structures.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. J. Jiang, X.-C. Yuan, Y. L. Lam, Y. C. Chan, and G. I. Ng, �Single-step fabrication of surface relief diffractive optical elements on hybrid sol-gel glass,� Opt. Eng. 40, 2017-2021 (2001).
    [CrossRef]
  2. S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, and M. A. Farada, �Sol-gel glass waveguide and grating on silicon,� J. Lightwave Technol. 16, 1640-1646 (1998).
    [CrossRef]
  3. P. Coudray, P. Etienne, Y. Moreau, J. Porque, and S. I. Najafi, �Sol-gel channel waveguide on silicon: fast direct imprinting and low cost fabrication,� Opt. Commun. 143, 199-202 (1997).
    [CrossRef]
  4. P. �yr�s, J.T. Rantala, S. Honkanen, S. B. Memdes, and N. Peyghambarian, �Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,� Opt. Commun. 162, 215-218 (1999).
    [CrossRef]
  5. S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A.V. Tishchenko, and O. Parriaux, �Single-step UV recording of sinusoidal surface gratings in hybrid sol-gel glasses,� Appl. Opt. 38, 6744-6748 (1999).
    [CrossRef]
  6. J. T. Rantala, P. �yr�s, R. Levy, S. Honkanen, M.R. Descour, and N. Peyghambarian, �Binary-phase zoneplate arrays based on hybrid sol-gel glass,� Opt. Lett. 23, 1939-1941 (1998).
    [CrossRef]
  7. K. Kintaka, J. Nishii, and N. Tohge, �Diffraction gratings of photosensitive ZrO2 gel films fabricated with the two-ultraviolet-beam interference method,� Appl. Opt. 39, 489-493 (2000).
    [CrossRef]
  8. Canyon Materials, Inc., website <a href="http://www.canyonmaterials.com ">http://www.canyonmaterials.com</a>

Appl. Opt.

J. Lightwave Technol.

Opt. Commun.

P. Coudray, P. Etienne, Y. Moreau, J. Porque, and S. I. Najafi, �Sol-gel channel waveguide on silicon: fast direct imprinting and low cost fabrication,� Opt. Commun. 143, 199-202 (1997).
[CrossRef]

P. �yr�s, J.T. Rantala, S. Honkanen, S. B. Memdes, and N. Peyghambarian, �Diffraction gratings in sol-gel films by direct contact printing using a UV-mercury lamp,� Opt. Commun. 162, 215-218 (1999).
[CrossRef]

Opt. Eng.

H. J. Jiang, X.-C. Yuan, Y. L. Lam, Y. C. Chan, and G. I. Ng, �Single-step fabrication of surface relief diffractive optical elements on hybrid sol-gel glass,� Opt. Eng. 40, 2017-2021 (2001).
[CrossRef]

Opt. Lett.

Other

Canyon Materials, Inc., website <a href="http://www.canyonmaterials.com ">http://www.canyonmaterials.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of microlens fabrication using the HEBS gray-scale mask.

Fig. 2.
Fig. 2.

Calibration of the sol-gel material with HEBS gray-scale mask for gray-scale values from optical density 0.12 to 1.2.

Fig. 3.
Fig. 3.

Transmittance of the hybrid sol-gel thin film on quartz substrate compared with transmittance of a bare quartz substrate.

Fig. 4.
Fig. 4.

Measured surface profile of the sol-gel microlens.

Metrics