Abstract

Self-imaging in a multi-mode active waveguide is examined as a method to preserve beam quality when amplifying a fundamental gaussian beam. Misalignment tolerance, gain saturation and thermal lensing effects are evaluated for the use of self-imaging in high average power, diode-pumped, planar waveguide lasers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Pelaez-Millas, A. Faulstich, H. J. Baker and D. R. Hall, "A planar waveguide Nd:YAG laser, face pumped by laser diode bars," in XI Int. Symp. on Gas Flow and Chemical Lasers and High Power Laser Conference, Edinburgh 1996, H. J. Baker, ed., Proc. SPIE 3092, 25-28 (1997).
    [CrossRef]
  2. H. J. Baker, A. A. Chesworth, D. Pelaez-Millas and D. R Hall, "A planar waveguide Nd:YAG laser with a hybrid waveguide-unstable resonator," Opt. Commun. 191, 125-131 (2001).
    [CrossRef]
  3. J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton and D. R. Hall "High-average-power Nd:YAG planar waveguide laser, face-pumped by 10 laser diode bars," Opt. Lett. 27, 524-526 (2002).
    [CrossRef]
  4. R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. K. Krupke, J. M. McMahon and W. J. Bennett "Continuous wave and passively Q-switched cladding pumped planar waveguide lasers," Opt. Lett. 26 881-3 (2001).
    [CrossRef]
  5. D. P. Shepherd, S. J. Hettrick, C. Li, J. I. MacKenzie, R J. Beach, S. C.Mitchell and H. E. Meissner, "High-power planar dielectric waveguide lasers," J. Phys. D: Appl.Phys. 34, 2420-32 (2001).
    [CrossRef]
  6. R. Ulrich and G. Ankele "Self-imaging in homogeneous planar optical waveguides," Appl. Phys. Lett. 27, 337-9 (1975).
    [CrossRef]
  7. J. M. Heaton, R. M. Jenkins, D. R. Wright, J. T. Parker, J. C. H. Birbeck and K. P. Hilton "Novel 1-to-N way integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides," Appl. Phys. Lett. 61, 1754-7 (1992).
    [CrossRef]
  8. D. P. Shepherd, C. L. Bonner, C. T. A. Brown, W. A. Clarkson, A. C. Tropper, D. C. Hanna and H. E. Meissner, "High-numerical-aperture, contact-bonded, planar waveguides for diode-bar-pumped lasers," Opt. Commun. 160, 47-50 (1999).
    [CrossRef]
  9. J. R. Lee, G. J. Friel, H. J. Baker, G. J. Hilton and D. R. Hall, "A Nd:YAG planar waveguide laser operating at 121 W output with face-pumping by diode bars, and its use as a power amplifier" in Advanced Solid-State Lasers, 2001 ed. C. Marshall, Trends in Optics and Photonics 50, 36-40 (2001)
  10. A. E. Siegman, Lasers (University Science Books, 1986) Chap. 7.
  11. Q. Cao, H. J. Baker and D. R. Hall "Transverse mode propagation and gain coefficients in a planar waveguide CO2 laser amplifier," IEEE J. Quant. Electron. 37 376-383 (2001)
    [CrossRef]

Appl. Phys. Lett.

R. Ulrich and G. Ankele "Self-imaging in homogeneous planar optical waveguides," Appl. Phys. Lett. 27, 337-9 (1975).
[CrossRef]

J. M. Heaton, R. M. Jenkins, D. R. Wright, J. T. Parker, J. C. H. Birbeck and K. P. Hilton "Novel 1-to-N way integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides," Appl. Phys. Lett. 61, 1754-7 (1992).
[CrossRef]

IEEE J. Quant. Electron.

Q. Cao, H. J. Baker and D. R. Hall "Transverse mode propagation and gain coefficients in a planar waveguide CO2 laser amplifier," IEEE J. Quant. Electron. 37 376-383 (2001)
[CrossRef]

J. Phys. D

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. MacKenzie, R J. Beach, S. C.Mitchell and H. E. Meissner, "High-power planar dielectric waveguide lasers," J. Phys. D: Appl.Phys. 34, 2420-32 (2001).
[CrossRef]

Opt. Commun.

H. J. Baker, A. A. Chesworth, D. Pelaez-Millas and D. R Hall, "A planar waveguide Nd:YAG laser with a hybrid waveguide-unstable resonator," Opt. Commun. 191, 125-131 (2001).
[CrossRef]

D. P. Shepherd, C. L. Bonner, C. T. A. Brown, W. A. Clarkson, A. C. Tropper, D. C. Hanna and H. E. Meissner, "High-numerical-aperture, contact-bonded, planar waveguides for diode-bar-pumped lasers," Opt. Commun. 160, 47-50 (1999).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. Pelaez-Millas, A. Faulstich, H. J. Baker and D. R. Hall, "A planar waveguide Nd:YAG laser, face pumped by laser diode bars," in XI Int. Symp. on Gas Flow and Chemical Lasers and High Power Laser Conference, Edinburgh 1996, H. J. Baker, ed., Proc. SPIE 3092, 25-28 (1997).
[CrossRef]

TOPS

J. R. Lee, G. J. Friel, H. J. Baker, G. J. Hilton and D. R. Hall, "A Nd:YAG planar waveguide laser operating at 121 W output with face-pumping by diode bars, and its use as a power amplifier" in Advanced Solid-State Lasers, 2001 ed. C. Marshall, Trends in Optics and Photonics 50, 36-40 (2001)

Other

A. E. Siegman, Lasers (University Science Books, 1986) Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Amplitude contour maps for propagation through an imaging length of waveguide, for (a) an axially aligned input gaussian beam, (b) a tilted beam and (c) an offset beam.

Fig. 2.
Fig. 2.

Exit beam propagation factor M2 for (a) varying input beam offset and (b) varying input beam tilt for the three waveguide lengths indicated, calculated for an input spot size w = 0.2 a

Fig. 3.
Fig. 3.

Imaging of a gaussian beam during saturated amplification in an active Λ/4 waveguide.

Fig. 4.
Fig. 4.

Power extraction efficiency for varying input power in the saturating amplifier region. Imaging sections with uniform and partially localized gain are compared to saturation by a fundamental waveguide mode and a uniform plane wave.

Fig. 5.
Fig. 5.

Amplitude profiles for the m = 1 and m = 3 modes with the varying values of the lensing parameter ρ indicated.

Fig. 6.
Fig. 6.

Amplitude contour map for imaging in an active waveguide with a lensing parameter ρ = 0.5 and input beam with w = 0.2a. The lower curve is the M2 beam propagation factor calculated from the sequence of beam profiles.

Fig. 7.
Fig. 7.

Variation of (a) the Λ/4 imaging length and (b) the output M2 factor at this length, as a function of the lensing parameter ρ

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β m = λ π m 2 4 n 1 a 2
B m = 2 a 0 a A ( y , 0 ) sin ( m π y a ) d y
A ( y , z ) = 2 a m B m exp ( j β m z ) sin ( m π y a )
Q ( max ) = π 2 λ 2 κ n 1 ( d n d T ) a 4
d 2 ψ d x 2 π ( Λ β ) ψ + ρ π 2 ( 1 4 x 2 ) ψ = 0

Metrics