Abstract

We have obtained thermoluminescence glow curves nondestructively from large, solid, ceramic samples by laser spot heating. Although the samples are brittle, laser thermoluminescence glow curves could be obtained with no visible damage to the samples. The experimental glow curves match with theory. By contrast, conventional thermoluminescence measurements require small samples to be removed from a ceramic and placed in a thermoluminescence machine. Laser-induced thermoluminescence glow curves from LiF, silica, and porcelain are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. J. Aitken, Thermoluminescence Dating (Academic Press, London, 1985).
  2. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985).
    [CrossRef]
  3. G. Kennedy and L. Knopff, Archeology 113, 147 (1960).
  4. E. A. Randall and M. H. F. Wilkins, �Phosphorescence and Electron Traps II� Proc. R. Soc. London Ser. A 184, 390 (1945).
    [CrossRef]
  5. G. F. J. Garlick and A. F. Gibson, �The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors,� Proc. Roy. Soc. London A 60, 574 (1948).
  6. S. W. S. McKeever and R. Chen, �Luminescence Models,� Radiation Measurements 27, 625 (1997).
    [CrossRef]
  7. Y. Kirsh, �Kinetic Analysis of Thermoluminescence,� Phys. Stat. Sol. (a) 129, 15 (1992).
    [CrossRef]
  8. M. Martini and F. Meinardi, �Thermally Stimulated Luminescence: New Perspectives in The Study of Defects in Solids,� Rivista Del Nuovo Cimento 20, 1 (1997).
    [CrossRef]
  9. A. G. Mahmoud, D. E. Arafah, and H. Sharabati, �Characterization of Thermoluminescence-Glow Curves Resulting from Sensitized TLD-100,� J. Phys. D 31, 224 (1998).
    [CrossRef]
  10. S. W. S. McKeever, �5.5 Ev Optical-Absorption, Supralinearity, and Sensitization of Thermoluminescence in LiF TLD-100,� J. Appl. Phys. 68, 724 (1990).
    [CrossRef]
  11. S. W. S. McKeever and Y. S. Horowitz, �Charge Trapping Mechanisms and Microdosimetric Processes in Lithium-Fluoride,� Radiation Physics and Chemistry 36, 35 (1990).
  12. D. Yossian and Y. S. Horowitz, �Computerized Glow Curve Deconvolution Applied To The Analysis of The Kinetics of Peak 5 in LiF-Mg,Ti (TLD-100),� J. Phys. D 28, 1495 (1995).
    [CrossRef]
  13. A. T. Davidson, A. G. Kozakiewicz, D. J. Wilkinson, and J. D. Comins, �Defect Clusters and Thermoluminescence in LiF Crystals,� J. Appl. Phys. 86, 1410 (1999).
    [CrossRef]
  14. L. A. R. da Rosa and L. V. E. Caldas, �On The Thermoluminescence of LiF from 83 To 320 K,� J. Appl. Phys. 84, 6841 (1998).
    [CrossRef]
  15. F. Bogani et al., �A Comparative Study of The Thermoluminescent Response To Beta Irradiation of CVD Diamond and LiF Dosimeters,� Nuclear Instruments & Methods in Physics Research Section A 388, 427 (1997).
    [CrossRef]
  16. S. Mahajna and Y. S. Horowitz, �The Unified Interaction Model Applied To The Gamma Ray Induced Supralinearity and Sensitization of Peak 5 in LiF:Mg,Ti (TLD-100),� J. Phys. D 30, 2603 (1997)
    [CrossRef]
  17. J. Zimmerman, �Radiation Induced Increase of the 100C TL sensitivity of Fired Quartz,� J. Phys. C 4, 3265 (1971).
    [CrossRef]
  18. D. Stoneham and S. Stokes, �An Investigation of the Relationship between the 110C TL peak and optically stimulated luminescence in Sedimentary Quartz,� Nucl. Tracks Radiat. Meas. 23, 647 (1991).
  19. W. F. Hornyak, R. Chen, and A. Franklin, �Thermoluminescence Characteristics of The 375-Degrees-C Electron Trap in Quartz,� Phys. Rev. B 46, 8036 (1992).
    [CrossRef]
  20. M. J. Aitken and B. W. Smith, �Optical Dating: Recuperation after Bleaching,� Quarternary Sci. Rev. 7, 387 (1998).
    [CrossRef]
  21. A. Halperin, �The Nature of The Electron Traps in Quartz Associated with the Thermoluminescence Peaks in The Range 70-700K,� Annales De Chimie-Science Des Materiaux 22, 595 (1997).
  22. G. Chen and S. H. Li, �Studies of Quartz 110 Degrees C Thermoluminescence Peak Sensitivity Change and Its Relevance To Optically Stimulated Luminescence Dating,� J. Phys. D 33, 437 (2000).
    [CrossRef]
  23. H. M. Rendell et al., �Spectral-Analysis of Thermoluminescence in The Dating of Potassium Feldspars,� Physica Status Solidi A 138, 335 (1993).
    [CrossRef]
  24. J. R. Prescott, P. J. Fox, G. B. Robertson, and J. T. Hutton, �3-Dimensional Spectral Studies of The Bleaching of The Thermoluminescence of Feldspars,� Radiation Measurements 23, 367 (1994).
    [CrossRef]
  25. H. Y. Goksu, D. Stoneham, I. K. Bailiff, and G. Adamiec, �A New Technique in Retrospective Thermoluminescence Dosimetry: Pre-Dose Effect in The 230 Degrees C Thermoluminescence Glow Peak of Porcelain,� Appl. Radiat. Isot. 49, 99 (1998).
    [CrossRef]
  26. M. R. Krbetschek, J. Gotze, A. Dietrich, and T. Trautmann, �Spectral Information from Minerals Relevant for Luminescence Dating,� Radiation Measurements 27, 695 (1997).
    [CrossRef]
  27. J. Gasiot, P. Br�aunlich, and J. P. Fillard, �Laser Heating in Thermoluminescence Dosimetry,� J. Appl. Phys. 53, 5200 (1982).
    [CrossRef]
  28. A. Abtahim, P. Braunlich, P. Kelly, and J. Gasiot, �Laser Stimulated Thermoluminescence,� J. Appl. Phys. 58, 1626 (1985).
    [CrossRef]
  29. P. Kelly, A. Abtahi, and P. Braunlich, �Laser Stimulated Thermoluminescence II,� J. Appl. Phys. 61, 738 (1986).
    [CrossRef]
  30. K. Kearfott et al., �Numerical Simulation of a TLD Pulsed Laser-heating Scheme for Determination of Shallow Dose and Deep Dose in Low-LET Radiation Fields,� Appl. Radiat. Isot. 52, 1419 (2000).
    [CrossRef] [PubMed]
  31. M. Grupen and K. Kearfott, �Numerical Analysis of Infrared Laser Heating in Thermoluminescent Material Layers,� J. Appl. Phys. 64, 1044 (1988).
    [CrossRef]
  32. D. L. Fehl et al., �Characterization of a Two-Dimensional, Thermoluminescence, Dose-Mapping System: Uniformity, Reproducibility, and Calibrations,� Rev. Sci. Instrum. 65, 3243 (1994).
    [CrossRef]
  33. J. L. Lawless and D. Lo, �Thermoluminescence for Nonlinear Heating Profiles with Application to Laser Heated Emissions,� J. Appl. Phys. 89, 6145 (2001).
    [CrossRef]

Annales De Chimie-Science Des Materiaux

A. Halperin, �The Nature of The Electron Traps in Quartz Associated with the Thermoluminescence Peaks in The Range 70-700K,� Annales De Chimie-Science Des Materiaux 22, 595 (1997).

Appl. Radiat. Isot.

H. Y. Goksu, D. Stoneham, I. K. Bailiff, and G. Adamiec, �A New Technique in Retrospective Thermoluminescence Dosimetry: Pre-Dose Effect in The 230 Degrees C Thermoluminescence Glow Peak of Porcelain,� Appl. Radiat. Isot. 49, 99 (1998).
[CrossRef]

K. Kearfott et al., �Numerical Simulation of a TLD Pulsed Laser-heating Scheme for Determination of Shallow Dose and Deep Dose in Low-LET Radiation Fields,� Appl. Radiat. Isot. 52, 1419 (2000).
[CrossRef] [PubMed]

Archeology

G. Kennedy and L. Knopff, Archeology 113, 147 (1960).

J. Appl. Phys.

S. W. S. McKeever, �5.5 Ev Optical-Absorption, Supralinearity, and Sensitization of Thermoluminescence in LiF TLD-100,� J. Appl. Phys. 68, 724 (1990).
[CrossRef]

M. Grupen and K. Kearfott, �Numerical Analysis of Infrared Laser Heating in Thermoluminescent Material Layers,� J. Appl. Phys. 64, 1044 (1988).
[CrossRef]

J. Gasiot, P. Br�aunlich, and J. P. Fillard, �Laser Heating in Thermoluminescence Dosimetry,� J. Appl. Phys. 53, 5200 (1982).
[CrossRef]

A. Abtahim, P. Braunlich, P. Kelly, and J. Gasiot, �Laser Stimulated Thermoluminescence,� J. Appl. Phys. 58, 1626 (1985).
[CrossRef]

P. Kelly, A. Abtahi, and P. Braunlich, �Laser Stimulated Thermoluminescence II,� J. Appl. Phys. 61, 738 (1986).
[CrossRef]

J. L. Lawless and D. Lo, �Thermoluminescence for Nonlinear Heating Profiles with Application to Laser Heated Emissions,� J. Appl. Phys. 89, 6145 (2001).
[CrossRef]

A. T. Davidson, A. G. Kozakiewicz, D. J. Wilkinson, and J. D. Comins, �Defect Clusters and Thermoluminescence in LiF Crystals,� J. Appl. Phys. 86, 1410 (1999).
[CrossRef]

L. A. R. da Rosa and L. V. E. Caldas, �On The Thermoluminescence of LiF from 83 To 320 K,� J. Appl. Phys. 84, 6841 (1998).
[CrossRef]

J. Phys. C

J. Zimmerman, �Radiation Induced Increase of the 100C TL sensitivity of Fired Quartz,� J. Phys. C 4, 3265 (1971).
[CrossRef]

J. Phys. D

A. G. Mahmoud, D. E. Arafah, and H. Sharabati, �Characterization of Thermoluminescence-Glow Curves Resulting from Sensitized TLD-100,� J. Phys. D 31, 224 (1998).
[CrossRef]

D. Yossian and Y. S. Horowitz, �Computerized Glow Curve Deconvolution Applied To The Analysis of The Kinetics of Peak 5 in LiF-Mg,Ti (TLD-100),� J. Phys. D 28, 1495 (1995).
[CrossRef]

G. Chen and S. H. Li, �Studies of Quartz 110 Degrees C Thermoluminescence Peak Sensitivity Change and Its Relevance To Optically Stimulated Luminescence Dating,� J. Phys. D 33, 437 (2000).
[CrossRef]

S. Mahajna and Y. S. Horowitz, �The Unified Interaction Model Applied To The Gamma Ray Induced Supralinearity and Sensitization of Peak 5 in LiF:Mg,Ti (TLD-100),� J. Phys. D 30, 2603 (1997)
[CrossRef]

Nucl. Tracks Radiat. Meas.

D. Stoneham and S. Stokes, �An Investigation of the Relationship between the 110C TL peak and optically stimulated luminescence in Sedimentary Quartz,� Nucl. Tracks Radiat. Meas. 23, 647 (1991).

Nuclear Instruments & Methods in Physics

F. Bogani et al., �A Comparative Study of The Thermoluminescent Response To Beta Irradiation of CVD Diamond and LiF Dosimeters,� Nuclear Instruments & Methods in Physics Research Section A 388, 427 (1997).
[CrossRef]

Phys. Rev. B

W. F. Hornyak, R. Chen, and A. Franklin, �Thermoluminescence Characteristics of The 375-Degrees-C Electron Trap in Quartz,� Phys. Rev. B 46, 8036 (1992).
[CrossRef]

Phys. Stat. Sol.

Y. Kirsh, �Kinetic Analysis of Thermoluminescence,� Phys. Stat. Sol. (a) 129, 15 (1992).
[CrossRef]

Physica Status Solidi A

H. M. Rendell et al., �Spectral-Analysis of Thermoluminescence in The Dating of Potassium Feldspars,� Physica Status Solidi A 138, 335 (1993).
[CrossRef]

Proc. R. Soc. London Ser. A

E. A. Randall and M. H. F. Wilkins, �Phosphorescence and Electron Traps II� Proc. R. Soc. London Ser. A 184, 390 (1945).
[CrossRef]

Proc. Roy. Soc. London A

G. F. J. Garlick and A. F. Gibson, �The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors,� Proc. Roy. Soc. London A 60, 574 (1948).

Quarternary Sci. Rev.

M. J. Aitken and B. W. Smith, �Optical Dating: Recuperation after Bleaching,� Quarternary Sci. Rev. 7, 387 (1998).
[CrossRef]

Radiation Measurements

S. W. S. McKeever and R. Chen, �Luminescence Models,� Radiation Measurements 27, 625 (1997).
[CrossRef]

J. R. Prescott, P. J. Fox, G. B. Robertson, and J. T. Hutton, �3-Dimensional Spectral Studies of The Bleaching of The Thermoluminescence of Feldspars,� Radiation Measurements 23, 367 (1994).
[CrossRef]

M. R. Krbetschek, J. Gotze, A. Dietrich, and T. Trautmann, �Spectral Information from Minerals Relevant for Luminescence Dating,� Radiation Measurements 27, 695 (1997).
[CrossRef]

Radiation Physics and Chemistry

S. W. S. McKeever and Y. S. Horowitz, �Charge Trapping Mechanisms and Microdosimetric Processes in Lithium-Fluoride,� Radiation Physics and Chemistry 36, 35 (1990).

Rev. Sci. Instrum.

D. L. Fehl et al., �Characterization of a Two-Dimensional, Thermoluminescence, Dose-Mapping System: Uniformity, Reproducibility, and Calibrations,� Rev. Sci. Instrum. 65, 3243 (1994).
[CrossRef]

Rivista Del Nuovo Cimento

M. Martini and F. Meinardi, �Thermally Stimulated Luminescence: New Perspectives in The Study of Defects in Solids,� Rivista Del Nuovo Cimento 20, 1 (1997).
[CrossRef]

Other

M. J. Aitken, Thermoluminescence Dating (Academic Press, London, 1985).

S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of laboratory apparatus for non-destructive laser-induced thermoluminescence measurements.

Fig. 2.
Fig. 2.

Laser-induced thermoluminescence emission is shown from a LiF (TLD-100) pellet. The circles are experimental results. The solid line is from theory.

Fig. 3.
Fig. 3.

Laser-induced Thermoluminescence emission is shown from a LiF (TLD-100) pellet exposed to 11.2 W of a 3 mm beam.

Fig. 4.
Fig. 4.

A quartz slide exposed to CO2 laser heating shows strong thermoluminescence. The laser power 38 W and the beam size was 3 mm.

Fig. 5.
Fig. 5.

The solid circles show thermoluminescence emission from a porcelain sample irradiated at 2150 Rad. The open circles show the signal from the same sample without irradiation. The solid line is theory.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I peak ~ E T ˙ k T 2 exp ( 1 1 + ( k T E ) ( 2 T T ̈ T ˙ 2 ) )

Metrics