Abstract

Real-time acquisition of intuitive spectrograms based on two-photon absorption frequency-resolved optical gating is demonstrated in a wavelength range around 1500 nm using an InP crystal for a two-photon absorption medium. Rapid wavelength-delay scanning, based on a counter-rotating spectrometer mirror synchronized with a delay stage, is introduced and incorporated with lock-in detection for the real-time spectrogram acquisition. It is shown that the frequency marginal and average delay time of acquired spectrograms provide the spectral intensity and group delay time of optical pulses under test. This allows the direct and rapid measurement of the magnitude and phase of ultrashort optical pulses in the spectral domain without using pulse retrieval algorithms to reconstruct the pulse shapes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumb?gel, B. A. Richman and D. J. Kane, ?Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,? Rev. Sci. Instrum. 68, 3277-3295 (1997), and references there in.
    [CrossRef]
  2. K. Ogawa and M. D. Pelusi, ?High-sensitivity pulse spectrogram measurement using two-photon absorption in a semiconductor at 1.5-m wavelength,? Opt. Express 7, 135-140 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-135">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-135</a>.
    [CrossRef] [PubMed]
  3. D. T. Reid, B. C. Thomsen, J. M. Dudley and J. D. Harvey, ?Sonogram characterisation of picosecond pulses at 1.5 <font face="Symbol">m</font>m using waveguide two-photon absorption,? Electron. Lett. 36, 1141-1142 (2000).
    [CrossRef]
  4. I. G. Cormack, W. Sibbett and D. T. Reid, ?Rapid measurement of ultrashort-pulse amplitude and phase from a two-photon absorption sonogram trace,? J. Opt. Soc. Am. B 18, 1377-1382 (2001).
    [CrossRef]
  5. D. O?Shea, M. Kimmel, P. O?Shea and R. Trebino, ?Ultrashort-laser-pulse measurement using swept beams,? Opt. Lett. 26, 1442-1444 (2001).
    [CrossRef]
  6. D. C. Hutchings and B. S. Wherrett, ?Theory of the anisotropy of ultrafast nonlinear refraction in zincblende semiconductors,? Phys. Rev. B 52, 8150-8159 (1995).
    [CrossRef]
  7. K. Ogawa and M. D. Pelusi, ?Characterisation of ultrashort optical pulses in a dispersion-managed fibre link using two-photon absorption frequency-resolved optical gating,? Opt. Commun. 198, 83-87 (2001).
    [CrossRef]
  8. The asymmetric spectrometer was manufactured by Electronics Optics Research, Ltd., 4-26-19, Koenji-Minami, Suginami, Tokyo 166-0003, Japan; mailto: eor@tkd.att.ne.jp
  9. D. H. Reitze, A. M. Weiner and D. E. Leaird, ?Shaping of wide bandwidth 20 femtosecond optical pulses,? Appl. Phys. Lett. 61, 1260-1262 (1992).
    [CrossRef]
  10. M. M. Wefers and K. A. Nelson, ?Generation of high-fidelity programmable ultrafast optical waveforms,? Opt. Lett. 20, 1-3 (1995).
    [CrossRef]
  11. M. S. Pshenichnikov, A. Baltuska, F. de Haan and D. A. Wiersma, ??Ultrashort pulse characterization by frequency-resolved pump-probe,? Ultrafast Phenomena XII, Springer Series in Chemical Physics Vol. 66 (Springer, Berlin, Heidelberg, 2001) pp.147-149.
    [CrossRef]
  12. L. Cohen, ?Time-frequency distributions - a review,? Proc. IEEE 77, 941-981 (1989).
    [CrossRef]
  13. D. J. Kane, ?Recent progress toward real-time measurement of ultrashort laser pulses,? IEEE J. Quantum Electron. 35, 421-431 (1999).
    [CrossRef]

Appl. Phys. Lett. (1)

D. H. Reitze, A. M. Weiner and D. E. Leaird, ?Shaping of wide bandwidth 20 femtosecond optical pulses,? Appl. Phys. Lett. 61, 1260-1262 (1992).
[CrossRef]

Electron. Lett. (1)

D. T. Reid, B. C. Thomsen, J. M. Dudley and J. D. Harvey, ?Sonogram characterisation of picosecond pulses at 1.5 <font face="Symbol">m</font>m using waveguide two-photon absorption,? Electron. Lett. 36, 1141-1142 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kane, ?Recent progress toward real-time measurement of ultrashort laser pulses,? IEEE J. Quantum Electron. 35, 421-431 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

K. Ogawa and M. D. Pelusi, ?Characterisation of ultrashort optical pulses in a dispersion-managed fibre link using two-photon absorption frequency-resolved optical gating,? Opt. Commun. 198, 83-87 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

D. C. Hutchings and B. S. Wherrett, ?Theory of the anisotropy of ultrafast nonlinear refraction in zincblende semiconductors,? Phys. Rev. B 52, 8150-8159 (1995).
[CrossRef]

Proc. IEEE (1)

L. Cohen, ?Time-frequency distributions - a review,? Proc. IEEE 77, 941-981 (1989).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumb?gel, B. A. Richman and D. J. Kane, ?Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,? Rev. Sci. Instrum. 68, 3277-3295 (1997), and references there in.
[CrossRef]

Ultrafast Phenomena XII, Springer Series (1)

M. S. Pshenichnikov, A. Baltuska, F. de Haan and D. A. Wiersma, ??Ultrashort pulse characterization by frequency-resolved pump-probe,? Ultrafast Phenomena XII, Springer Series in Chemical Physics Vol. 66 (Springer, Berlin, Heidelberg, 2001) pp.147-149.
[CrossRef]

Other (1)

The asymmetric spectrometer was manufactured by Electronics Optics Research, Ltd., 4-26-19, Koenji-Minami, Suginami, Tokyo 166-0003, Japan; mailto: eor@tkd.att.ne.jp

Supplementary Material (1)

» Media 1: MOV (1721 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of apparatus for the real-time acquisition of TPA FROG spectrograms. BS: beam splitter. AOM: acousto-optic modulator. PC: personal computer. PD: photodiode.

Fig. 2.
Fig. 2.

Setup for real-time TPA FROG measurement of optical pulses with chromatic dispersion of variable magnitude and sign.

Fig. 3.
Fig. 3.

Sample movie (1.6 MB) of the real-time acquisition of TPA FROG spectrograms of chirped femtosecond pulses with variable magnitude of second-order chromatic dispersion.

Fig. 4.
Fig. 4.

TPA FROG spectrograms and traces of spectral intensity (bottom) and group delay time (imposed on the spectrograms) of OPO pulses with negative, nearly zero and positive chromatic dispersion of the second order, respectively.

Fig. 5.
Fig. 5.

TPA FROG spectrograms and traces of spectral intensity and group delay time of OPO pulses with negative and positive third-order chromatic dispersion.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S τ ω = + dt [ e iωt { 1 I g ( t τ ) } E p ( t ) ] 2
S τ ω = 2 Re [ ε p * ( ω ) + dt { e iωt I g ( t τ ) E p ( t ) } ]
S τ ω = 2 Re [ ε p * ( ω ) e iωτ + d Ω { e i Ω τ ι g ( ω Ω ) ε p ( Ω ) } ]
+ dω·S τ ω = 2 + dt [ I g ( t τ ) E p ( t ) 2 ]
+ dτ·S τ ω = 2 ι g ( 0 ) ε p ( ω ) 2
τ ω = + dτ·τ·S τ ω + dτ·S τ ω
= ( ω )

Metrics