Abstract

A novel phenomenon of trapped pulse generation by orthogonally polarized femtosecond soliton pulse is discovered in low birefringent optical fiber. As pulse propagation, wavelengths of soliton pulse and trapped pulse are shifted toward longer wavelength side due to effects of soliton self-frequency shift and pulse trapping. The energy of trapped pulse is increased exponentially through Raman gain of soliton pulse and orthogonally polarized and temporally overlapped two colored femtosecond twin pulses are generated. The spectrogram of output pulses is observed using cross-correlation frequency resolved optical gating technique. The characteristics of this phenomenon are also analyzed numerically and numerical results are almost in agreement with experimental ones.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Nishizawa and T. Goto, ?Compact system of wavelength tunable femtosecond soliton pulse generation using optical fibers,? IEEE Photon. Technol. Lett. 11, 325-327 (1999).
    [CrossRef]
  2. N. Nishizawa, R. Okamura, and T. Goto, ?Widely wavelength tunable ultrashort soliton pulse and antistokes pulse generation for wavelengths of 1.32-1.75 <font face="Symbol">m</font>m,? Jpn. J. Appl. Phys. 39, L409-L411 (2000).
    [CrossRef]
  3. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, ?Transform-limited femtosecondWDM pulse generation by spectral filtering of gigahertz supercotinuum,? Electron. Lett. 30, 1166-1168 (1994).
    [CrossRef]
  4. N. Nishizawa and T. Goto, ?Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,? Jpn. J. Appl. Phys. 40, L365-L367 (2001).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear fiber optics, third ed. (Academic, San Diego, Calif. 2001).
  6. M. N. Islam, C. D. Poole, and J. P. Gordon, ?Soliton trapping in birefringent optical fibers,? Opt. Lett. 14, 1011-1013 (1989).
    [CrossRef] [PubMed]
  7. N. Nishizawa and T. Goto, ?Pulse trapping by ultrashort soliton pulses in optical fibers across zerodispersion wavelength,? Opt. Lett. 27, 152-154 (2002).
    [CrossRef]
  8. F. M. Mitschke and L. F. Mollenauer, ?Discovery of the soliton self-frequency shift,? Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  9. N. Nishizawa and T. Goto, ?Widely wavelength-tunable ultrashort pulse generation using polarization maintaining fibers,? IEEE J. Select. Topics in Quantum Electron. 7, 325-327 (2001).
    [CrossRef]
  10. S. Linden, H. Giessen, and J. Kuhl, ?XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,? Phys. Stat. Sol. (b) 206, 119-124 (1998).
    [CrossRef]
  11. N. Nishizawa and T. Goto, ?Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlated frequency resolved optical gating,? Opt. Express 8, 328-335 (2001) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328</a>.
    [CrossRef] [PubMed]
  12. S. Kumar, A. Selvarajan, and G. V. Anand, ?Influence of Raman scattering on the cross phase modulation in optical fibers,? Opt. Commun. 102, 329-335 (2002).
    [CrossRef]
  13. S. Kumar, A. Selvarajan, and G. V. Anand, ?Nonlinear copropagation of two optical pulses of different frequencies in birefringent fibers,? J. Opt. Soc. Am. B 11, 810-817 (1994).
    [CrossRef]
  14. N. Nishizawa, R. Okamura, and T. Goto, ?Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers,? Jpn. J. Appl. Phys. 38, 4768-4771 (1999).
    [CrossRef]

Electron. Lett.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, ?Transform-limited femtosecondWDM pulse generation by spectral filtering of gigahertz supercotinuum,? Electron. Lett. 30, 1166-1168 (1994).
[CrossRef]

IEEE J. Sel. Top. in Quantum Electron.

N. Nishizawa and T. Goto, ?Widely wavelength-tunable ultrashort pulse generation using polarization maintaining fibers,? IEEE J. Select. Topics in Quantum Electron. 7, 325-327 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Nishizawa and T. Goto, ?Compact system of wavelength tunable femtosecond soliton pulse generation using optical fibers,? IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Nishizawa, R. Okamura, and T. Goto, ?Widely wavelength tunable ultrashort soliton pulse and antistokes pulse generation for wavelengths of 1.32-1.75 <font face="Symbol">m</font>m,? Jpn. J. Appl. Phys. 39, L409-L411 (2000).
[CrossRef]

N. Nishizawa and T. Goto, ?Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,? Jpn. J. Appl. Phys. 40, L365-L367 (2001).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, ?Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers,? Jpn. J. Appl. Phys. 38, 4768-4771 (1999).
[CrossRef]

Opt. Commun.

S. Kumar, A. Selvarajan, and G. V. Anand, ?Influence of Raman scattering on the cross phase modulation in optical fibers,? Opt. Commun. 102, 329-335 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Stat. Sol.

S. Linden, H. Giessen, and J. Kuhl, ?XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,? Phys. Stat. Sol. (b) 206, 119-124 (1998).
[CrossRef]

Other

G. P. Agrawal, Nonlinear fiber optics, third ed. (Academic, San Diego, Calif. 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1
Fig.1

Observed optical spectra of soliton pulse and trapped pulse when the polarization direction of the input pulse is inclined from the slow axis of LB-PMF by 19 degree. The fiber length is 140 m and fiber input power is 30 mW. The spectra around 1556 nm are the pump pulse at fast axis and the residual components of the pump pulse at slow axis which are not converted into the soliton pulse.

Fig. 2
Fig. 2

Characteristics of wavelength shift of output pulses and the intensity variation of the trapped pulse as a function of fiber length. The red line shows the spectral intensity of trapped pulse. The green and blue lines are center wavelengths of the soliton pulse and trapped pulse, respectively.

Fig.3
Fig.3

Experimental setup of X-FROG measurement for observation of the soliton pulse and trapped pulse.

Fig.4
Fig.4

Observed spectrogram of soliton and trapped pulses at the output of 140-m-long LB-PMF.

Fig. 5
Fig. 5

Numerical results of the characteristics of wavelength shift and variation of pulse energy for the soliton pulse and trapped pulse as a function of fiber length. Red and blue lines correspond to the characteristics of soliton pulse and trapped pulse, respectively.

Fig.6
Fig.6

Numerical results of trapped pulse generation at the propagation length of 140 m , (a) temporal and (b) spectral change. Red lines are slow axis components and blue ones are fast axis ones.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z + 2 A 2 2 A T 2 β 3 A 6 3 A T 3 = ( A 2 A + 2 3 B 2 A + i ω 0 A A 2 A T T R A A 2 T ) g A 2 B 2 A
B z d B T + 2 B 2 2 B T 2 β 3 B 6 3 B T 3 = ( B 2 B + 2 3 A 2 B + i ω 0 B B 2 B T T R B B 2 T ) + g B 2 A 2 B

Metrics