Abstract

We present detailed experimental and numerical results for birefringence tuning in microstructured optical fibers. Index tunable polymer is infused into specific air-holes to obtain birefringence whose tunability is achieved by temperature tuning the polymer index. We also study the symmetry properties of the modes for different waveguide structures.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. V. Kaiser and H. W. Astle, "Low-loss single-material fibers made from pure fused silica," The Bell System Technical Journal 53, 1021-1039, (1974).
  2. T. A. Birks, D. Mogilevstev, J. C. Knight, and P. S.J . Russell, "Dispersion Compensation Using Single-Material Fibers," IEEE Phot. Tech. Lett. 11, 674-676, (1999).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers," Opt. Lett. 25, 796-798, (2000).
    [CrossRef]
  4. T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Phot. Tech. Lett. 13, 588-590, (2001).
    [CrossRef]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327, (2000).
    [CrossRef]
  6. M. Steel and J. R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231, (2001).
    [CrossRef]
  7. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490, (2001).
    [CrossRef]
  8. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713, (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>.
    [CrossRef]
  9. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, "Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber," IEEE Phot. Tech. Lett. 13, 52-54, (2001).
    [CrossRef]
  10. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193, (2001).
    [CrossRef]
  11. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. Burdge, "Control of waveguide properties in hybrid polymer-silica microstructured optical fiber gratings," in OFC conference 2000, 3, pp. 134-136.
  12. C. Kerbage, P. Steinvurzel, A. Hale, R. S. Windeler, and B. J. Eggleton, "Birefringent tunable hybrid microstructured optical fiber," in CLEO conference (Optical Society of America, Washington, D.C., 2002).
  13. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Tech. 155, 1277-1294, (1997).
    [CrossRef]
  14. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured photonic crystal optical fiber," Opt. Lett, in press, (2002).
  15. C. Kerbage, B. J. Eggleton, P. S. Westbrook, and R. S. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-123,(2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113</a>
    [CrossRef] [PubMed]
  16. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding mode resonances in air-silica microstructure fiber," J. Lightwave Tech. 18, 1084-1100, (2000)
    [CrossRef]

Appl. Phys. Lett.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193, (2001).
[CrossRef]

CLEO conference

C. Kerbage, P. Steinvurzel, A. Hale, R. S. Windeler, and B. J. Eggleton, "Birefringent tunable hybrid microstructured optical fiber," in CLEO conference (Optical Society of America, Washington, D.C., 2002).

IEEE Phot. Tech. Lett.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, "Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber," IEEE Phot. Tech. Lett. 13, 52-54, (2001).
[CrossRef]

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Phot. Tech. Lett. 13, 588-590, (2001).
[CrossRef]

T. A. Birks, D. Mogilevstev, J. C. Knight, and P. S.J . Russell, "Dispersion Compensation Using Single-Material Fibers," IEEE Phot. Tech. Lett. 11, 674-676, (1999).
[CrossRef]

J. Lightwave Tech.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding mode resonances in air-silica microstructure fiber," J. Lightwave Tech. 18, 1084-1100, (2000)
[CrossRef]

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Tech. 155, 1277-1294, (1997).
[CrossRef]

OFC conference

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. Burdge, "Control of waveguide properties in hybrid polymer-silica microstructured optical fiber gratings," in OFC conference 2000, 3, pp. 134-136.

Opt. Express

Opt. Lett.

The Bell System Technical Journal

P. V. Kaiser and H. W. Astle, "Low-loss single-material fibers made from pure fused silica," The Bell System Technical Journal 53, 1021-1039, (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph of the MOF with single layer of air-holes in the cladding and polymer infused in one of the holes. (b) Schematic cross-section of the asymmetric waveguide.

Fig. 2.
Fig. 2.

Schematic of all-fiber variable attenuator based on tapered MOF with polymer infused in the waist, the inset shows refractive indices of the polymer and silica dependence on temperature. Also the mode field profiles are shown at different positions along the length of the waiste region of the MOF, with polymer (npol=1.434) at 0cm, 1cm, and 2cm along the waist.

Fig. 3.
Fig. 3.

Mode field profile in the waist of the MOF with (a) no polymer in the air-holes, with polymer (b) npol=1.420 , and (c) npol=1.434 .

Fig. 4.
Fig. 4.

Schematic of the cross sections of the waveguide showing different birefringent waveguide geometries Calculated mode profiles corresponding to the different geometries shown in Fig. 3.

Fig. 5
Fig. 5

Experimental setup showing light form a laser source incident on the MOF, which is placed in a capillary heater, and detected by a polarization analyzer.

Fig. 6.
Fig. 6.

Poincaré sphere measured as a function of temperature for the different waveguides geometries. (a) No phase shift detected without polymer in any of the air-holes, (b)&(c) symmetric waveguides show very small pahase shift. (d–f) Asymmetric waveguides show rotations on the sphere, which correspond to strong birefringence The red line correspond to the polarization states in the near part of the sphere and the blue line to those on the oppositre side of the sphere.

Fig. 7.
Fig. 7.

Plot of the birefringence and phase shift as a function of temperature and polymer index for (a) two opposite holes filled, (b) one hole filled, and (c) two adjacent holes filled with polymer. The solid lines correspond to the numerical simulations and the squares with error bars represent the experimental results.

Fig. 8.
Fig. 8.

Calculated and measured PDL as a function of temperature and refractive index of the polymer. The right axis shows the corresponding phase shift. As in Fig. 7, the solid lines correspond to the numerical simulations and the squares with error bars represent the experimental results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B = n x n y = n TE eff n TM eff
ϕ = ( β x β y ) L = 2 π ( n x n y ) L λ = 2 πBL λ
PDL = 10 log T max T min = 10 log s 2 2 ( J ) s 1 2 ( J )

Metrics