Abstract

We show that illuminating bulk Nd-doped Bk7 glass at 488 nm induces a decrease in refractive index of order 10-4. Using this index change we experimentally demonstrate that it is possible to use self-writing to enhance the divergence of a Gaussian beam. Here simulations with a Laguerre-Gaussian ‘donut’ writing beam show that a depressed-index ‘pipe’ structure can be created. We demonstrate that these complex waveguide structures can subsequently be used to guide light of different wavelengths.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. M. Monro, C. M. de Sterke, and L. Poladian, ?Investigation of waveguide growth in photosensitive germanosilicate glass,? J. Opt. Soc. Am. B 13, 2824-2832 (1996).
    [CrossRef]
  2. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, ?Observation of selftrapping of light in a self-written channel in photosensitive glass,? Phys. Rev. Lett. 80, 4072-4075 (1999).
    [CrossRef]
  3. A. M. Ljungstrom, and T. M. Monro, ?Light-induced self-writing e.ects in bulk chalcogenide glass,? J. Lightwave Technol. 20, 78-85 (2002).
    [CrossRef]
  4. A. S. Kewitsch, and A. Yariv, ?Self-focusing and self-trapping of optical beams upon photopolymerization,? Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  5. M. Kagami, T. Yamashita, and H. Ito, ?Light-induced self-written three-dimensional optical waveguide,? Appl. Phys. Lett. 79, 1079-1081 (2001).
    [CrossRef]
  6. S. Sarkisov, A. Taylor, P. Venkateswarlu, and A. Wilkosz, ?Optical branching in dye-doped polymeric waveguide,? Opt. Commun. 145, 265-273 (1998).
    [CrossRef]
  7. T.M. Monro, C. M. de Sterke, and L. Poladian, ?Catching light in its own trap,? J. Mod. Opt. 48, 191-238 (2001).
  8. Janos Technology Inc., Optical material selection guide, <a href="http://madang.ajou.ac.kr/~ydpark/archive/optical/boro.html">http://madang.ajou.ac.kr/~ydpark/archive/optical/boro.html</a>.
  9. GRINTECH GmbH, Germany, <a href="http://www.grintech.de">http://www.grintech.de</a>.
  10. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, ?Fabrication and characterization of low-loss optical .bers containing rare-earth ions,? J. Lightwave Technol. 4, 870-875 (1986).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science Books, 1986), pp. 627-628.
  12. N. R. Heckenberg, R. McDu., C. P Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, ?Laser beams with phase singularities,? Opt. quant. Electron. 24, 951-962 (1992).
    [CrossRef]

Appl. Phys. Lett. (1)

M. Kagami, T. Yamashita, and H. Ito, ?Light-induced self-written three-dimensional optical waveguide,? Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

J. Lightwave Technol. (2)

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, ?Fabrication and characterization of low-loss optical .bers containing rare-earth ions,? J. Lightwave Technol. 4, 870-875 (1986).
[CrossRef]

A. M. Ljungstrom, and T. M. Monro, ?Light-induced self-writing e.ects in bulk chalcogenide glass,? J. Lightwave Technol. 20, 78-85 (2002).
[CrossRef]

J. Mod. Opt. (1)

T.M. Monro, C. M. de Sterke, and L. Poladian, ?Catching light in its own trap,? J. Mod. Opt. 48, 191-238 (2001).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Sarkisov, A. Taylor, P. Venkateswarlu, and A. Wilkosz, ?Optical branching in dye-doped polymeric waveguide,? Opt. Commun. 145, 265-273 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. quant. Electron. (1)

N. R. Heckenberg, R. McDu., C. P Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, ?Laser beams with phase singularities,? Opt. quant. Electron. 24, 951-962 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, ?Observation of selftrapping of light in a self-written channel in photosensitive glass,? Phys. Rev. Lett. 80, 4072-4075 (1999).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science Books, 1986), pp. 627-628.

Janos Technology Inc., Optical material selection guide, <a href="http://madang.ajou.ac.kr/~ydpark/archive/optical/boro.html">http://madang.ajou.ac.kr/~ydpark/archive/optical/boro.html</a>.

GRINTECH GmbH, Germany, <a href="http://www.grintech.de">http://www.grintech.de</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Observed evolution in FWHM and peak intensity at the output face, λ=488 nm and writing beam FWHM=9μm. The power through the sample and the observed luminescence are shown in the right and left insets respectively. The red line shows corresponding simulation results.

Fig. 2.
Fig. 2.

(a) Diffraction of a m=1 donut beam over 1.5 Rayleigh ranges (transverse directions are expanded by a factor of 10). (b) Cross sections of donut beams of different orders.

Fig. 3.
Fig. 3.

Refractive index distribution during waveguide evolution. (a) Cross sections at sample input (red lines) and output (blue dashed lines). (b) Contour plots along one transverse direction (again the transverse direction is expanded).

Fig. 4.
Fig. 4.

A 10μm Gaussian beam travelling (white contour lines) within the pipe structures written using PTP=30μm (a) and PTP=20μm (b). Output cross sections of the guided (red) beam and the equivalent free diffracting (blue) beam are shown in the insets.

Tables (1)

Tables Icon

Table 1. Equations and appropriate parameters used when modelling self-writing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E x y 0 t = 1 πm ! ( 2 a ) m + 1 exp ( i m tan 1 y x ) ( x 2 + y 2 ) m 2 exp ( x 2 + y 2 a 2 ) .

Metrics