Abstract

The Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy (Ocean PHILLS) is a hyperspectral imager specifically designed for imaging the coastal ocean. It uses a thinned, backside-illuminated CCD for high sensitivity and an all-reflective spectrograph with a convex grating in an Offner configuration to produce a nearly distortion-free image. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several oceanographic experiments in 1999–2001. Here we describe the instrument design and present the results of laboratory characterization and calibration. We also present examples of remote-sensing reflectance data obtained from the LEO-15 site in New Jersey that agrees well with ground-truth measurements.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, ?Imaging spectrometry for Earth remote sensing,? Science 228, 1147-1153 (1985).
    [CrossRef] [PubMed]
  2. Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, ?Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,? J. Geophys. Res. 106, 11639-11651 (2001).
    [CrossRef]
  3. S. Sathyendranath, D. V. Subba Rao, Z. Chen, V. Stuart, T. Platt, G. L. Bugden, W. Jones, and P. Vass, ?Aircraft remote sensing of toxic phytoplankton blooms: a case study from Cardigan River, Prince Edward Island,? Can. J. Remote Sens. 23, 15-23 (1997).
  4. P. J. Mumby, J. R. M. Chisholm, C. D. Clark, J. D. Hedley, and J. Jaubert, ?A bird?s-eye view of the health of coral reefs,? Nature 413, 36 (2001).
    [CrossRef] [PubMed]
  5. T. L. Wilson and C. O. Davis, ?Hyperspectral Remote Sensing Technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,? in Infrared Spaceborne Remote Sensing VI, M. S. Scholl and B. F. Andresen, eds., Proc. SPIE 3437, 2-10, (1998).
    [CrossRef]
  6. T. L. Wilson and C. O. Davis, ?The Naval EarthMap Observer (NEMO) Satellite,? in Imaging SpectrometryV, M. R. Descour and S. Shen, eds., Proc. SPIE 3753, 2-11 (1999).
    [CrossRef]
  7. J. Bowles, M. Kappus, J. Antoniades, M. Baumback, M Czarnaski, C. O. Davis, and J. Grossmann, ?Calibration of inexpensive pushbroom imaging spectrometers,? Metrologica 35, 657-661 (1998).
    [CrossRef]
  8. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, ?Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),? Remote Sens. Environ. 65, 227-248 (1998).
    [CrossRef]
  9. R. G. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson, ?Mineral mapping with HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, USA,? Int. J. Remote Sens. 18, 1553-1570 (1997).
    [CrossRef]
  10. Office of Naval Research (ONR) Coastal Benthic Optical Properties (CoBOP) program, <a href="http://www.psicorp.com/cobop/cobop.html">http://www.psicorp.com/cobop/cobop.html</a>.
  11. Hyperspectral Coupled Ocean Dynamics Experiments (HyCODE), <a href="http://www.opl.ucsb.edu/hycode.html">http://www.opl.ucsb.edu/hycode.html</a>.
  12. Florida Environmental Research Institute, <a href="http://www.flenvironmental.org/Projects.htm">http://www.flenvironmental.org/Projects.htm</a>.
  13. Long-term Ecosystem Observatory at a 15 Meter Depth (LEO-15), <a href="http://marine.rutgers.edu/mrs/LEO/LEO15.html">http://marine.rutgers.edu/mrs/LEO/LEO15.html</a>.
  14. J. Fisher, J. A. Antoniades, C. Rollins, and L. Xiang, ?Hyperspectral imaging sensor for the coastal environment,? in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds., Proc. SPIE 3482, 179-186 (1998).
    [CrossRef]
  15. J. Fisher, M. M. Baumback, J. H. Bowles, J. M. Grossmann, and J. A. Antoniades, ?Comparison of lowcost hyperspectral sensors,? in Imaging Spectrometry IV, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
    [CrossRef]
  16. H. Gumbel, ?System considerations for hyper/ultra spectroradiometric sensors,? in Hyperspectral Remote Sensing and Applications, S. S. Shen, ed., Proc. SPIE 2821, 138-170 (1996).
    [CrossRef]
  17. A. Offner, ?Annular field systems and the future of optical microlithography,? Opt. Eng. 26, 294-299 (1987).
  18. P. Mouroulis, R. O. Green, and T. G. Chrien, ?Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,? Appl. Opt. 39, 2210-2220 (2000).
    [CrossRef]
  19. R. A. Leathers, T. V. Downes, W. A. Snyder, J. H. Bowles, C. O. Davis, M. E. Kappus, M. A. Carney, W. Chen, D. Korwan, M. J. Montes, and W. J. Rhea, Ocean PHILLS Data Collection and Processing: May 2000 Deployment, Lee Stocking Island, Bahamas, U. S. Naval Research Laboratory technical report NRL/FR/7212--01-10,010 (in press).
  20. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, ?Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,? Appl. Opt. 39, 887-896 (2000).
    [CrossRef]
  21. M. J. Montes, B.-C. Gao, and C. O. Davis, ?A new algorithm for atmospheric correction of hypespectral remote sensing data,? in Geo-Spatial Image and Data Exploitation II, W. E. Roper, ed., Proc. SPIE 4383, 23-30 (2001).
    [CrossRef]

.S. Naval Research Lab. technical Report

R. A. Leathers, T. V. Downes, W. A. Snyder, J. H. Bowles, C. O. Davis, M. E. Kappus, M. A. Carney, W. Chen, D. Korwan, M. J. Montes, and W. J. Rhea, Ocean PHILLS Data Collection and Processing: May 2000 Deployment, Lee Stocking Island, Bahamas, U. S. Naval Research Laboratory technical report NRL/FR/7212--01-10,010 (in press).

Appl. Opt.

Can. J. Remote Sens.

S. Sathyendranath, D. V. Subba Rao, Z. Chen, V. Stuart, T. Platt, G. L. Bugden, W. Jones, and P. Vass, ?Aircraft remote sensing of toxic phytoplankton blooms: a case study from Cardigan River, Prince Edward Island,? Can. J. Remote Sens. 23, 15-23 (1997).

Int. J. Remote Sens.

R. G. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson, ?Mineral mapping with HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, USA,? Int. J. Remote Sens. 18, 1553-1570 (1997).
[CrossRef]

J. Geophys. Res.

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, ?Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,? J. Geophys. Res. 106, 11639-11651 (2001).
[CrossRef]

Metrologica

J. Bowles, M. Kappus, J. Antoniades, M. Baumback, M Czarnaski, C. O. Davis, and J. Grossmann, ?Calibration of inexpensive pushbroom imaging spectrometers,? Metrologica 35, 657-661 (1998).
[CrossRef]

Nature

P. J. Mumby, J. R. M. Chisholm, C. D. Clark, J. D. Hedley, and J. Jaubert, ?A bird?s-eye view of the health of coral reefs,? Nature 413, 36 (2001).
[CrossRef] [PubMed]

Opt. Eng.

A. Offner, ?Annular field systems and the future of optical microlithography,? Opt. Eng. 26, 294-299 (1987).

Proc. SPIE

J. Fisher, J. A. Antoniades, C. Rollins, and L. Xiang, ?Hyperspectral imaging sensor for the coastal environment,? in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds., Proc. SPIE 3482, 179-186 (1998).
[CrossRef]

J. Fisher, M. M. Baumback, J. H. Bowles, J. M. Grossmann, and J. A. Antoniades, ?Comparison of lowcost hyperspectral sensors,? in Imaging Spectrometry IV, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3438, 23-30 (1998).
[CrossRef]

H. Gumbel, ?System considerations for hyper/ultra spectroradiometric sensors,? in Hyperspectral Remote Sensing and Applications, S. S. Shen, ed., Proc. SPIE 2821, 138-170 (1996).
[CrossRef]

T. L. Wilson and C. O. Davis, ?Hyperspectral Remote Sensing Technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite,? in Infrared Spaceborne Remote Sensing VI, M. S. Scholl and B. F. Andresen, eds., Proc. SPIE 3437, 2-10, (1998).
[CrossRef]

T. L. Wilson and C. O. Davis, ?The Naval EarthMap Observer (NEMO) Satellite,? in Imaging SpectrometryV, M. R. Descour and S. Shen, eds., Proc. SPIE 3753, 2-11 (1999).
[CrossRef]

M. J. Montes, B.-C. Gao, and C. O. Davis, ?A new algorithm for atmospheric correction of hypespectral remote sensing data,? in Geo-Spatial Image and Data Exploitation II, W. E. Roper, ed., Proc. SPIE 4383, 23-30 (2001).
[CrossRef]

Remote Sens. Environ.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, ?Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),? Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Science

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, ?Imaging spectrometry for Earth remote sensing,? Science 228, 1147-1153 (1985).
[CrossRef] [PubMed]

Other

Office of Naval Research (ONR) Coastal Benthic Optical Properties (CoBOP) program, <a href="http://www.psicorp.com/cobop/cobop.html">http://www.psicorp.com/cobop/cobop.html</a>.

Hyperspectral Coupled Ocean Dynamics Experiments (HyCODE), <a href="http://www.opl.ucsb.edu/hycode.html">http://www.opl.ucsb.edu/hycode.html</a>.

Florida Environmental Research Institute, <a href="http://www.flenvironmental.org/Projects.htm">http://www.flenvironmental.org/Projects.htm</a>.

Long-term Ecosystem Observatory at a 15 Meter Depth (LEO-15), <a href="http://marine.rutgers.edu/mrs/LEO/LEO15.html">http://marine.rutgers.edu/mrs/LEO/LEO15.html</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Figure 1.
Figure 1.

Design and specifications for the HyperSpecTM VS-15 Offner Spectrograph.

Figure 2.
Figure 2.

Spatial image of the bar target showing 1024 spatial channels (horizontal) and 128 (512 binned by 4) spectral channels (vertical dimension). The non-uniformity from the top to the bottom is due to the spectral properties of the light source which is blue rich and has spectral emission lines.

Figure 3.
Figure 3.

The spectral response of the PHILLS to 594.1 nm Helium-Neon laser light. The data are unbinned with a channel width of 1.15 nm. The inset figure is a close-up view for channels near the spectral peak plotted on a logarithmic scale.

Figure 4.
Figure 4.

Image of a low pressure Mercury lamp showing 1024 spatial channels (horizontal) by 512 spectral channels (vertical dimension).

Figure 5.
Figure 5.

a) Linear fits to Ocean PHILLS radiometric calibration data for four selected wavelengths. b) Typical values of the radiometric calibration gain for the left (sample 488, top curve) and right (sample 517, bottom curve) side of the 1024 sample CCD. The spectral channels that correspond to the response curves shown in Figure 5a are marked with their legend labels.

Figure 6.
Figure 6.

Typical at-sensor PHILLS radiance spectra and corresponding signal-to-noise ratios for bin-by-4 data from the LEO-15 site: (a) coastal water, (b) vegetated land.

Figure 7.
Figure 7.

PHILLS image from the 2001 LEO-15 deployment (39 31 05 N and 74 20 47 W, 14:18 GMT, 31 July 2001.)

Figure 8:
Figure 8:

Atmospherically-corrected remote-sensing reflectance spectrum from the pixel indicated with an X in Figure 7 compared with a ground-truth measurement obtained with a hand-held radiometer at the site.

Tables (1)

Tables Icon

Table 1. Measured spatial performance metrics for the complete PHILLS, including lens, spectrograph, and camera.

Metrics