Abstract

The properties of anisotropic diffraction of light by volume holographic grating in birefringent photorefractive crystals are discussed. This diffraction takes place when the refractive index for diffracted light is different from the refractive index for incident light. It is found that in some special geometry of wavevector diagram the diffraction becomes less sensitive to the wavelength mismatch of Bragg condition. The wavelength range may extent in several times the range of ordinary isotropic diffraction on the grating of the same spacing and thickness. Theoretical explanation of this phenomena and experimental results of widerange diffraction in BaTiO3 photorefractive crystal are also presented.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically induced variable light deflection by anisotropic Bragg diffraction in photorefractive KNbO3

E. Voit, C. Zaldo, and P. Günter
Opt. Lett. 11(5) 309-311 (1986)

Electric-field multiplexing of volume holograms in paraelectric crystals

Michal Balberg, Meir Razvag, Eli Refaeli, and Aharon J. Agranat
Appl. Opt. 37(5) 841-847 (1998)

Beam-width-dependent filtering properties of strong volume holographic gratings

Hung-Te Hsieh, Wenhai Liu, Frank Havermeyer, Christophe Moser, and Demetri Psaltis
Appl. Opt. 45(16) 3774-3780 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE- 3, 85–93 (1967).
    [Crossref]
  2. E. G. H. Lean, C. F. Quate, and H. J. Shaw, “Continuos deflection of laser beam,” Appl. Phys. Lett. 10, 48–50 (1967).
    [Crossref]
  3. N. Uchida and N. Niizeki, “Acoustooptic deflection material and techniques,” in Proc. IEEE 61, (Institute of Electrical and Electronics Engineers, New York, 1973), 1073–1092.
  4. I. C. Chang, “Design of wideband acoustoopic Bragg cells,” in Bragg signal processing and output devices, ed. Bob V. Markevich and Theo Kooij, Proc. SPIE 352, 34–41 (1982).
  5. S. I. Stepanov, M. P. Petrov, and A. A. Kamshilin, “Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal,” Sov. Tech. Phys. Lett. 3, 345–346 (1977).
  6. T. G. Pencheva, M. P. Petrov, and S. I. Stepanov, “Selective properties of volume phase holograms in photorefractive crystals,” Opt. Commun. 40, 175–178 (1981).
    [Crossref]
  7. P. Yeh, Introduction to photorefractive nonlinear optics (John Wiley & Sons Inc., New York, 1993).
  8. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  9. K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
    [Crossref]
  10. G. Montermezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [Crossref]
  11. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002).
    [Crossref]

2002 (1)

1997 (1)

G. Montermezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[Crossref]

1982 (1)

K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
[Crossref]

1981 (1)

T. G. Pencheva, M. P. Petrov, and S. I. Stepanov, “Selective properties of volume phase holograms in photorefractive crystals,” Opt. Commun. 40, 175–178 (1981).
[Crossref]

1977 (1)

S. I. Stepanov, M. P. Petrov, and A. A. Kamshilin, “Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal,” Sov. Tech. Phys. Lett. 3, 345–346 (1977).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1967 (2)

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE- 3, 85–93 (1967).
[Crossref]

E. G. H. Lean, C. F. Quate, and H. J. Shaw, “Continuos deflection of laser beam,” Appl. Phys. Lett. 10, 48–50 (1967).
[Crossref]

Butler, J. J.

Chang, I. C.

I. C. Chang, “Design of wideband acoustoopic Bragg cells,” in Bragg signal processing and output devices, ed. Bob V. Markevich and Theo Kooij, Proc. SPIE 352, 34–41 (1982).

Dixon, R. W.

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE- 3, 85–93 (1967).
[Crossref]

Kamshilin, A. A.

S. I. Stepanov, M. P. Petrov, and A. A. Kamshilin, “Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal,” Sov. Tech. Phys. Lett. 3, 345–346 (1977).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kojima, K.

K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
[Crossref]

Lean, E. G. H.

E. G. H. Lean, C. F. Quate, and H. J. Shaw, “Continuos deflection of laser beam,” Appl. Phys. Lett. 10, 48–50 (1967).
[Crossref]

Malcuit, M. S.

Montermezzani, G.

G. Montermezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[Crossref]

Niizeki, N.

N. Uchida and N. Niizeki, “Acoustooptic deflection material and techniques,” in Proc. IEEE 61, (Institute of Electrical and Electronics Engineers, New York, 1973), 1073–1092.

Pencheva, T. G.

T. G. Pencheva, M. P. Petrov, and S. I. Stepanov, “Selective properties of volume phase holograms in photorefractive crystals,” Opt. Commun. 40, 175–178 (1981).
[Crossref]

Petrov, M. P.

T. G. Pencheva, M. P. Petrov, and S. I. Stepanov, “Selective properties of volume phase holograms in photorefractive crystals,” Opt. Commun. 40, 175–178 (1981).
[Crossref]

S. I. Stepanov, M. P. Petrov, and A. A. Kamshilin, “Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal,” Sov. Tech. Phys. Lett. 3, 345–346 (1977).

Quate, C. F.

E. G. H. Lean, C. F. Quate, and H. J. Shaw, “Continuos deflection of laser beam,” Appl. Phys. Lett. 10, 48–50 (1967).
[Crossref]

Rodriguez, M. A.

Shaw, H. J.

E. G. H. Lean, C. F. Quate, and H. J. Shaw, “Continuos deflection of laser beam,” Appl. Phys. Lett. 10, 48–50 (1967).
[Crossref]

Stepanov, S. I.

T. G. Pencheva, M. P. Petrov, and S. I. Stepanov, “Selective properties of volume phase holograms in photorefractive crystals,” Opt. Commun. 40, 175–178 (1981).
[Crossref]

S. I. Stepanov, M. P. Petrov, and A. A. Kamshilin, “Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal,” Sov. Tech. Phys. Lett. 3, 345–346 (1977).

Uchida, N.

N. Uchida and N. Niizeki, “Acoustooptic deflection material and techniques,” in Proc. IEEE 61, (Institute of Electrical and Electronics Engineers, New York, 1973), 1073–1092.

Yeh, P.

P. Yeh, Introduction to photorefractive nonlinear optics (John Wiley & Sons Inc., New York, 1993).

Zgonik, M.

G. Montermezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[Crossref]

Appl. Phys. Lett. (1)

E. G. H. Lean, C. F. Quate, and H. J. Shaw, “Continuos deflection of laser beam,” Appl. Phys. Lett. 10, 48–50 (1967).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

IEEE J. Quantum Electron. (1)

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE- 3, 85–93 (1967).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Kojima, “Diffraction of light waves in inhomogeneous and anisotropic medium,” Jpn. J. Appl. Phys. 21, 1303–1307 (1982).
[Crossref]

Opt. Commun. (1)

T. G. Pencheva, M. P. Petrov, and S. I. Stepanov, “Selective properties of volume phase holograms in photorefractive crystals,” Opt. Commun. 40, 175–178 (1981).
[Crossref]

Phys. Rev. E (1)

G. Montermezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[Crossref]

Sov. Tech. Phys. Lett. (1)

S. I. Stepanov, M. P. Petrov, and A. A. Kamshilin, “Optical diffraction with polarization-plane rotation in a volume hologram in an electrooptic crystal,” Sov. Tech. Phys. Lett. 3, 345–346 (1977).

Other (3)

N. Uchida and N. Niizeki, “Acoustooptic deflection material and techniques,” in Proc. IEEE 61, (Institute of Electrical and Electronics Engineers, New York, 1973), 1073–1092.

I. C. Chang, “Design of wideband acoustoopic Bragg cells,” in Bragg signal processing and output devices, ed. Bob V. Markevich and Theo Kooij, Proc. SPIE 352, 34–41 (1982).

P. Yeh, Introduction to photorefractive nonlinear optics (John Wiley & Sons Inc., New York, 1993).

Supplementary Material (1)

» Media 1: MPG (1544 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wave vector diagram of anisotropic diffraction in (x,y) plane of uniaxial crystal

Fig.2.
Fig.2.

The dispersive curves of anosotropic diffraction on the grating with spacing Λ=0.9 μm in (x,y) plane of BaTiO3 crystal (no=2.458, ne=2.399))

Fig.3.
Fig.3.

Experimental setup

Fig.4
Fig.4

The photos of diffracted images of widerange anisotropic diffraction in BaTiO3 crystal, (1.5 MB) Movie of two-diffracted spots

Fig.5.
Fig.5.

The angle characteristic of widerange anisotropic diffraction in BaTiO3 crystal for two different wavelengths (red-for 514 nm, blue-for 501 nm)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ sin Θ i = Λ 2 n o Λ ( n o 2 n e 2 + λ 2 Λ 2 ) sin Θ d = Λ 2 n e λ ( n o 2 n e 2 λ 2 Λ 2 ) ,
λ o = Λ n o 2 n e 2 .
Δ λ anis = λ 3 L Δ n ,
Δ λ is = λ 2 cos Θ i 2 Ln sin 2 Θ i
Δ λ anis Δ λ is = 2 n sin 2 Θ i cos Θ i L λ Δ n .

Metrics