Abstract

Using time-resolved imaging and scattering techniques, we directly and indirectly monitor the breakdown dynamics induced in water by femtosecond laser pulses over eight orders of magnitude in time. We resolve, for the first time, the picosecond plasma dynamics and observe a 20 ps delay before the laser-produced plasma expands. We attribute this delay to the electron-ion energy transfer time.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
    [CrossRef]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311 (1999).
    [CrossRef]
  3. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93 (2001).
    [CrossRef]
  5. T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
    [CrossRef]
  6. F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).
  7. K. Konig, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819 (2001).
    [CrossRef]
  8. N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, “Photodisruption in biological tissues and single cells using femtosecond laser pulses,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .
  9. A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
    [CrossRef]
  10. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882 (1997).
    [CrossRef]
  11. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
    [CrossRef]
  12. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
    [CrossRef]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
    [CrossRef]
  14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
    [CrossRef]
  15. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
    [CrossRef]
  16. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22, 1817 (1997).
    [CrossRef]
  17. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
    [CrossRef]
  18. T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
    [CrossRef]
  19. P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
    [CrossRef]
  20. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
    [CrossRef]
  21. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
    [CrossRef]
  22. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: Time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441 (2000).
    [CrossRef]
  23. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
    [CrossRef]
  24. J. P. Fischer, T. Juhasz, and J. F. Bille, “Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses,” Appl. Phys. A 64, 181 (1997).
    [CrossRef]
  25. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Amer. 100, 148 (1996).
    [CrossRef]
  26. J. G. Fujimoto, Ophthal. & Vis. Science 26, 1771 (1985).
  27. C. A. Puliafito and R. F. Steinert, IEEE J. Quantum Electron. 20, 1442 (1984).
    [CrossRef]
  28. L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
    [CrossRef]
  29. C. B. Schaffer, “Interaction of femtosecond laser pulses with transparent materials,” Ph.D. thesis, Harvard University (2001).
  30. D. von der Linde and H. Schuler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216 (1996).
    [CrossRef]
  31. T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

2001 (3)

2000 (2)

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: Time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441 (2000).
[CrossRef]

1999 (4)

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
[CrossRef]

1998 (4)

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
[CrossRef]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

1997 (4)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

J. P. Fischer, T. Juhasz, and J. F. Bille, “Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses,” Appl. Phys. A 64, 181 (1997).
[CrossRef]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22, 1817 (1997).
[CrossRef]

1996 (7)

D. von der Linde and H. Schuler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Amer. 100, 148 (1996).
[CrossRef]

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

1995 (1)

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

1991 (1)

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

1985 (1)

J. G. Fujimoto, Ophthal. & Vis. Science 26, 1771 (1985).

1984 (1)

C. A. Puliafito and R. F. Steinert, IEEE J. Quantum Electron. 20, 1442 (1984).
[CrossRef]

Abraham, E.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: Time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441 (2000).
[CrossRef]

Bille, J. F.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

J. P. Fischer, T. Juhasz, and J. F. Bille, “Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses,” Appl. Phys. A 64, 181 (1997).
[CrossRef]

Birngruber, R.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

Boppart, S. A.

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

Bor, Z.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93 (2001).
[CrossRef]

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Amer. 100, 148 (1996).
[CrossRef]

Callan, J. P.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

Cheng, Z.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

DaSilva, L. B.

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

Datta, D.

N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, “Photodisruption in biological tissues and single cells using femtosecond laser pulses,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .

Deutsch, T. F.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

Djotyan, G.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

Doukas, A. G.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

Finlay, R. J.

Fischer, J. P.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

J. P. Fischer, T. Juhasz, and J. F. Bille, “Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses,” Appl. Phys. A 64, 181 (1997).
[CrossRef]

Frieder, H.

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

Frisoli, J. K.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

Fritzsche, W.

Fujimoto, J. G.

J. G. Fujimoto, Ophthal. & Vis. Science 26, 1771 (1985).

Gaeta, A. L.

Garcia, J. F.

Glezer, E. N.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22, 1817 (1997).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

Glinsky, M. E.

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

Gotz, M. H.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

Her, T. H.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

Hirao, K.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Homoelle, D.

Horvath, C.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

Huang, L.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

Inouye, H.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Juhasz, T.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

J. P. Fischer, T. Juhasz, and J. F. Bille, “Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses,” Appl. Phys. A 64, 181 (1997).
[CrossRef]

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

Kautek, W.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

Konig, K.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Krausz, F.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

Kruger, J.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

Kurtz, R. M.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Loesel, F. H.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

Mammini, B. M.

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

Matsumoto, H.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: Time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441 (2000).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22, 1817 (1997).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, “Photodisruption in biological tissues and single cells using femtosecond laser pulses,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .

Milosavljevic, M.

Minoshima, K.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: Time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441 (2000).
[CrossRef]

Mitsuyu, T.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Miura, K.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Mourou, G.

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
[CrossRef]

Nishimura, N.

Noack, F.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Amer. 100, 148 (1996).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

Puliafito, C. A.

C. A. Puliafito and R. F. Steinert, IEEE J. Quantum Electron. 20, 1442 (1984).
[CrossRef]

Qiu, J. R.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Riemann, I.

Roach, W. P.

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

Sartania, S.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93 (2001).
[CrossRef]

E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22, 1817 (1997).
[CrossRef]

N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, “Photodisruption in biological tissues and single cells using femtosecond laser pulses,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .

C. B. Schaffer, “Interaction of femtosecond laser pulses with transparent materials,” Ph.D. thesis, Harvard University (2001).

Schuler, H.

Shen, N.

N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, “Photodisruption in biological tissues and single cells using femtosecond laser pulses,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

Small, W.

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

Smith, C.

Spielmann, C.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Steinert, R. F.

C. A. Puliafito and R. F. Steinert, IEEE J. Quantum Electron. 20, 1442 (1984).
[CrossRef]

Stuart, B. C.

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

Suarez, C.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

Suhm, N.

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
[CrossRef]

Thomas, R. J.

Vogel, A.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636 (1999).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Amer. 100, 148 (1996).
[CrossRef]

von der Linde, D.

Wielandy, S.

Zweig, A. D.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

J. P. Fischer, T. Juhasz, and J. F. Bille, “Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses,” Appl. Phys. A 64, 181 (1997).
[CrossRef]

Appl. Phys. B (3)

F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66, 121 (1998).

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, “Non-invasive determination of shock wave pressure generated by optical breakdown,” Appl. Phys. B 53, 237 (1991).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment,” IEEE J. Quantum Electron. 31, 2250 (1995).
[CrossRef]

C. A. Puliafito and R. F. Steinert, IEEE J. Quantum Electron. 20, 1442 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996).
[CrossRef]

T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999).
[CrossRef]

J Appl Phys (1)

J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J Appl Phys 83, 7488 (1998).
[CrossRef]

J. Acoust. Soc. Amer. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Amer. 100, 148 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Applications of femtosecond lasers in corneal surgery,” Laser Phys. 10, 495 (2000).

Laser Surg. Med. (1)

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Laser Surg. Med. 19, 23 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784 (2001).
[CrossRef]

Ophthal. & Vis. Science (1)

J. G. Fujimoto, Ophthal. & Vis. Science 26, 1771 (1985).

Opt. Commun. (1)

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: Time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176, 441 (2000).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076 (1998).
[CrossRef]

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “Gaas under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80, 185 (1998).
[CrossRef]

Other (2)

C. B. Schaffer, “Interaction of femtosecond laser pulses with transparent materials,” Ph.D. thesis, Harvard University (2001).

N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, “Photodisruption in biological tissues and single cells using femtosecond laser pulses,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .

Supplementary Material (1)

» Media 1: MOV (2438 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Time-resolved imaging setup for observing the dynamics of laser-induced breakdown. A time-delayed probe pulse illuminates the dynamics induced by the femtosecond pulse. The objective used to focus the femtosecond pulse images the dynamics onto a CCD camera.

Fig. 2
Fig. 2

Images of femtosecond laser-induced breakdown in water obtained for various time delays using the setup shown in Fig. 1. A corresponding quicktime movie shows the first 10 ns of expansion. One second of the movie shows 1 nanosecond of the dynamics. [Media 1]

Fig. 3
Fig. 3

Evolution of the radius of the laser-produced plasma, pressure wave, and cavitation bubble as a function of time (● plasma/bubble radius, □ pressure wave).

Fig. 4
Fig. 4

Time-resolved scattering setup. The directly transmitted probe beam is blocked so that only scattered probe light reaches the detector.

Fig. 5
Fig. 5

Time-resolved scattering signal from femtosecond laser-induced breakdown in water. The scale on the right axis was calculated assuming the plasma density is always sufficiently high that the scattered intensity depends only on the cross-sectional area of the plasma. The imaged radius is then used to calibrate the scattering signal in the 100 ps to 1 ns region.

Metrics