Abstract

In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
    [Crossref]
  2. G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
    [Crossref]
  3. A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
    [Crossref]
  4. K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
    [Crossref]
  5. D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
    [Crossref]
  6. R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
    [Crossref]
  7. C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
    [Crossref]
  8. J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
    [Crossref]
  9. J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
    [Crossref]

2000 (1)

D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
[Crossref]

1999 (1)

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

1997 (4)

J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
[Crossref]

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

1996 (1)

T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
[Crossref]

1995 (1)

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

1993 (1)

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Bulmer, C.H.

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Burns, W.K.

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Cox, C.

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Durhuus, T.

T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
[Crossref]

Eisenstein, G.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

Fuster, J.

J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
[Crossref]

Gopalakrishnan, G.K.

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Helkey, R.

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Ho, K.P

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

Knight, G.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

Liaw, S.K.

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

Lin, C.

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

Lindsay, A.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

Liu, C.P

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

Mecozzi, A.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

Mork, J.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

Seeds, A.J.

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

Shim, D.S.

D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
[Crossref]

Twinchel, J.V.

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Wake, D.

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

Winfall, S.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

IEEE J. Lightwave Technol. (1)

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

IEEE Microwave Guide Wave Lett. (1)

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

IEEE Photon Tech. Lett. (1)

J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
[Crossref]

IEEE Photon. Tech. Lett. (2)

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
[Crossref]

IEEE Sel. To. Quantum. Electron. (1)

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

IEEE/OSA J. Lightwave. Technol (1)

T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1:
Figure 1:

Rf signal mixer based on a SLA employed in a nonlinear modulator configuration

Figure 2:
Figure 2:

Relative magnitudes of linear and second order nonlinear terms for a 5mm SLA modulator with Pin=1 mW, Psat=28.5 mW, τ s=100psec, a=3.10-20m2, No=1.1.1024m-3, Γ=0.3, A=0.2.10-12 m2. Solid lines correspond to the results obtained by solving (4–7), whereas (*) curves represent the numerical solution of (1)–(2). Ω21+100MHz.

Figure 3:
Figure 3:

PRF-up vs the value of PRFin both expressed in dBm for a standard SOA based RF mixer,. taking the LO Rf power as a parameter. (device parameters are given in the text).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

S z = Γ a ( N N o ) S α L S
N t = I ( t , z ) e V N τ s v g a ( N N o ) S
I ( t ) = I ¯ + Δ I ( z , Ω LO ) e j Ω LO t + Δ I * ( z , Ω LO ) e j Ω LO t
+ Δ I ( z , Ω S ) e j Ω S t + Δ I * ( Ω S ) e j Ω S t
Y ( z , t ) = Y ¯ ( z ) + Δ Y ( z , Ω LO ) e j Ω LO t + Δ Y * ( z , Ω LO ) e j Ω LO t
+ Δ Y ( z , Ω s ) e j Ω s t + Δ Y * ( Ω s ) e j Ω s t +
+ Δ Y ( z , 2 Ω LO ) e j 2 Ω LO t + Δ Y * ( z , 2 Ω LO ) e j 2 Ω LO t +
Δ Y ( z , 2 Ω s ) e j 2 Ω s t + Δ Y * ( 2 Ω s ) e j 2 Ω s t +
+ Δ Y ( z , Ω LO Ω S ) e j ( Ω LO Ω s ) t + Δ Y * ( z , Ω LO Ω s ) e j ( Ω LO Ω s ) t +
Δ Y ( z , Ω LO + Ω s ) e j ( Ω LO + Ω s ) t + Δ Y * ( z , Ω LO + Ω s ) e j ( Ω LO + Ω s ) t
d S ¯ d z = ( g sat α L ) S ¯
d Δ S ( Ω i ) d z = ( g sat α L β ( Ω i ) ) Δ S ( Ω i ) + Γ Δ I ( Ω i ) e V v g g sat
d Δ S ( 2 Ω i ) d z = ( g sat α L β ( 2 Ω i ) ) Δ S ( 2 Ω i ) +
+ ( g sat β ( 2 Ω i ) g sat ) { Γ a τ S Δ S ( Ω i ) Q ( Ω i ) x x [ Δ I ( Ω i ) e V g sat v g Γ Δ S ( Ω i ) ] }
d Δ S ( Ω LO ± Ω S ) d z = ( g sat α L β ( Ω LO ± Ω S ) ) Δ S ( Ω LO ± Ω S ) +
Γ a τ S ( g sat β ( Ω LO ± Ω S ) g sat )
{ Δ S ( Ω S ) Q ( Ω LO ) ( Δ I ( Ω LO ) e V g sat v g Δ S ( Ω LO ) Γ ) + Δ S ( Ω LO ) Q ( * ) ( Ω S ) ( Δ I ( Ω S ) e V g sat v g Δ S ( * ) ( Ω S ) Γ ) }
P RFin = Δ I ( Ω s ) 2 Z m 2
P RF up = R ( ħ w v g A ) Δ S ( Ω LO + Ω s ) 2 Z r 2
P RF down = R ( ħ w v g A ) Δ S ( Ω LO Ω s ) 2 Z r 2

Metrics