Abstract

In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Durhuus et al., ?All optical wavelength Conversi?n by semiconductor optical amplifiers,? J. Lightwave. Technol 14, 942-953 (1996).
    [CrossRef]
  2. G. K. Gopalakrishnan, W. K. Burns and C. H. Bulmer, ?Microwave optical mixing in LiNbO3 modulators,? IEEE Trans. Microwave Theory Tech. 41, 2383-2391 (1993).
    [CrossRef]
  3. A. Lindsay, G. Knight, and S. Winfall, ?Photonic Mixers for wide bandwidth RF receiver Applications, ? IEEE Trans. Microwave Theory Tech. 43, 2311-2397 (1995).
    [CrossRef]
  4. K. P Ho, S. K. Liaw and C. Lin, ?Efficient photonic mixer with frequency doubling, ? IEEE Photon. Tech. Lett. 9, 511-513 (1997).
    [CrossRef]
  5. D. S. Shim et al., ?Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ? IEEE Photon. Tech. Lett. 12, 193-195 (2000).
    [CrossRef]
  6. R. Helkey, J. V. Twinchel and C. Cox, ?A down-conversion optical link with RF gain,? J. Lightwave Technol. 15, 956-961 (1997).
    [CrossRef]
  7. C. P Liu, A. J. Seeds and D. Wake, ?Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ? IEEE Microwave Guide Wave Lett. 7, 72-74 (1997).
    [CrossRef]
  8. J. Mork, A. Mecozzi and G. Eisenstein, ?The modulation response of a semiconductor optical amplifier, ? IEEE Sel. To. Quantum. Electron. 5, 851-860 (1999).
    [CrossRef]
  9. J. Fuster et al, ?Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers,? IEEE Photon Tech. Lett. 9, 1161-1163 (1997).
    [CrossRef]

IEEE Microwave Guide Wave Lett. (1)

C. P Liu, A. J. Seeds and D. Wake, ?Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ? IEEE Microwave Guide Wave Lett. 7, 72-74 (1997).
[CrossRef]

IEEE Photon Tech. Lett. (1)

J. Fuster et al, ?Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers,? IEEE Photon Tech. Lett. 9, 1161-1163 (1997).
[CrossRef]

IEEE Photon. Tech. Lett. (2)

K. P Ho, S. K. Liaw and C. Lin, ?Efficient photonic mixer with frequency doubling, ? IEEE Photon. Tech. Lett. 9, 511-513 (1997).
[CrossRef]

D. S. Shim et al., ?Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ? IEEE Photon. Tech. Lett. 12, 193-195 (2000).
[CrossRef]

IEEE Sel. To. Quantum. Electron. (1)

J. Mork, A. Mecozzi and G. Eisenstein, ?The modulation response of a semiconductor optical amplifier, ? IEEE Sel. To. Quantum. Electron. 5, 851-860 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

G. K. Gopalakrishnan, W. K. Burns and C. H. Bulmer, ?Microwave optical mixing in LiNbO3 modulators,? IEEE Trans. Microwave Theory Tech. 41, 2383-2391 (1993).
[CrossRef]

A. Lindsay, G. Knight, and S. Winfall, ?Photonic Mixers for wide bandwidth RF receiver Applications, ? IEEE Trans. Microwave Theory Tech. 43, 2311-2397 (1995).
[CrossRef]

J. Lightwave Technol. (1)

R. Helkey, J. V. Twinchel and C. Cox, ?A down-conversion optical link with RF gain,? J. Lightwave Technol. 15, 956-961 (1997).
[CrossRef]

J. Lightwave. Technol. (1)

T. Durhuus et al., ?All optical wavelength Conversi?n by semiconductor optical amplifiers,? J. Lightwave. Technol 14, 942-953 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1:
Figure 1:

Rf signal mixer based on a SLA employed in a nonlinear modulator configuration

Figure 2:
Figure 2:

Relative magnitudes of linear and second order nonlinear terms for a 5mm SLA modulator with Pin=1 mW, Psat=28.5 mW, τ s=100psec, a=3.10-20m2, No=1.1.1024m-3, Γ=0.3, A=0.2.10-12 m2. Solid lines correspond to the results obtained by solving (4–7), whereas (*) curves represent the numerical solution of (1)–(2). Ω21+100MHz.

Figure 3:
Figure 3:

PRF-up vs the value of PRFin both expressed in dBm for a standard SOA based RF mixer,. taking the LO Rf power as a parameter. (device parameters are given in the text).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

S z = Γ a ( N N o ) S α L S
N t = I ( t , z ) e V N τ s v g a ( N N o ) S
I ( t ) = I ¯ + Δ I ( z , Ω LO ) e j Ω LO t + Δ I * ( z , Ω LO ) e j Ω LO t
+ Δ I ( z , Ω S ) e j Ω S t + Δ I * ( Ω S ) e j Ω S t
Y ( z , t ) = Y ¯ ( z ) + Δ Y ( z , Ω LO ) e j Ω LO t + Δ Y * ( z , Ω LO ) e j Ω LO t
+ Δ Y ( z , Ω s ) e j Ω s t + Δ Y * ( Ω s ) e j Ω s t +
+ Δ Y ( z , 2 Ω LO ) e j 2 Ω LO t + Δ Y * ( z , 2 Ω LO ) e j 2 Ω LO t +
Δ Y ( z , 2 Ω s ) e j 2 Ω s t + Δ Y * ( 2 Ω s ) e j 2 Ω s t +
+ Δ Y ( z , Ω LO Ω S ) e j ( Ω LO Ω s ) t + Δ Y * ( z , Ω LO Ω s ) e j ( Ω LO Ω s ) t +
Δ Y ( z , Ω LO + Ω s ) e j ( Ω LO + Ω s ) t + Δ Y * ( z , Ω LO + Ω s ) e j ( Ω LO + Ω s ) t
d S ¯ d z = ( g sat α L ) S ¯
d Δ S ( Ω i ) d z = ( g sat α L β ( Ω i ) ) Δ S ( Ω i ) + Γ Δ I ( Ω i ) e V v g g sat
d Δ S ( 2 Ω i ) d z = ( g sat α L β ( 2 Ω i ) ) Δ S ( 2 Ω i ) +
+ ( g sat β ( 2 Ω i ) g sat ) { Γ a τ S Δ S ( Ω i ) Q ( Ω i ) x x [ Δ I ( Ω i ) e V g sat v g Γ Δ S ( Ω i ) ] }
d Δ S ( Ω LO ± Ω S ) d z = ( g sat α L β ( Ω LO ± Ω S ) ) Δ S ( Ω LO ± Ω S ) +
Γ a τ S ( g sat β ( Ω LO ± Ω S ) g sat )
{ Δ S ( Ω S ) Q ( Ω LO ) ( Δ I ( Ω LO ) e V g sat v g Δ S ( Ω LO ) Γ ) + Δ S ( Ω LO ) Q ( * ) ( Ω S ) ( Δ I ( Ω S ) e V g sat v g Δ S ( * ) ( Ω S ) Γ ) }
P RFin = Δ I ( Ω s ) 2 Z m 2
P RF up = R ( ħ w v g A ) Δ S ( Ω LO + Ω s ) 2 Z r 2
P RF down = R ( ħ w v g A ) Δ S ( Ω LO Ω s ) 2 Z r 2

Metrics