Abstract

In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes

Efthymios Rouvalis, Martyn J. Fice, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 19(3) 2079-2084 (2011)

Idler-free photonic microwave mixer using a broadband optical source and cascaded phase modulators

Xiaoxiao Xue, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Lett. 37(9) 1451-1453 (2012)

Silicon slow-light-based photonic mixer for microwave-frequency conversion applications

A. M. Gutiérrez, A. Brimont, J. Herrera, M. Aamer, J. Martí, D. J. Thomson, F. Y. Gardes, G. T. Reed, J. M. Fedeli, and P. Sanchis
Opt. Lett. 37(10) 1721-1723 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
    [Crossref]
  2. G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
    [Crossref]
  3. A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
    [Crossref]
  4. K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
    [Crossref]
  5. D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
    [Crossref]
  6. R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
    [Crossref]
  7. C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
    [Crossref]
  8. J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
    [Crossref]
  9. J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
    [Crossref]

2000 (1)

D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
[Crossref]

1999 (1)

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

1997 (4)

J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
[Crossref]

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

1996 (1)

T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
[Crossref]

1995 (1)

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

1993 (1)

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Bulmer, C.H.

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Burns, W.K.

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Cox, C.

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Durhuus, T.

T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
[Crossref]

Eisenstein, G.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

Fuster, J.

J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
[Crossref]

Gopalakrishnan, G.K.

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Helkey, R.

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Ho, K.P

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

Knight, G.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

Liaw, S.K.

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

Lin, C.

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

Lindsay, A.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

Liu, C.P

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

Mecozzi, A.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

Mork, J.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

Seeds, A.J.

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

Shim, D.S.

D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
[Crossref]

Twinchel, J.V.

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

Wake, D.

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

Winfall, S.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

IEEE J. Lightwave Technol. (1)

R. Helkey, J.V. Twinchel, and C. Cox, “ A down-conversion optical link with RF gain,” IEEE J. Lightwave Technol. 15, 956–961 (1997).
[Crossref]

IEEE Microwave Guide Wave Lett. (1)

C.P Liu, A.J. Seeds, and D. Wake, “Two terminal edge-coupled InP/InGaAs heterojunction phototransistor optoelectronic mixer, ” IEEE Microwave Guide Wave Lett. 7, 72–74 (1997).
[Crossref]

IEEE Photon Tech. Lett. (1)

J. Fuster et al, “ Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers ,“ IEEE Photon Tech. Lett. 9, 1161–1163 (1997).
[Crossref]

IEEE Photon. Tech. Lett. (2)

K.P Ho, S.K. Liaw, and C. Lin, “ Efficient photonic mixer with frequency doubling, ” IEEE Photon. Tech. Lett. 9, 511–513 (1997).
[Crossref]

D.S. Shim et al., “ Optoelectronic RF signal mixing using an electroabsorption waveguide as an integrated photodetector/Mixer, ” IEEE Photon. Tech. Lett. 12, 193–195 (2000).
[Crossref]

IEEE Sel. To. Quantum. Electron. (1)

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor optical amplifier, ” IEEE Sel. To. Quantum. Electron. 5, 851–860 (1999).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

G.K. Gopalakrishnan, W.K. Burns, and C.H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications, ” IEEE Trans. Microwave Theory Tech. 43, 2311–2397 (1995).
[Crossref]

IEEE/OSA J. Lightwave. Technol (1)

T. Durhuus et al, “All optical wavelength Conversión by semiconductor optical amplifiers,” IEEE/OSA J. Lightwave. Technol 14, 942–953 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1:
Figure 1:

Rf signal mixer based on a SLA employed in a nonlinear modulator configuration

Figure 2:
Figure 2:

Relative magnitudes of linear and second order nonlinear terms for a 5mm SLA modulator with Pin=1 mW, Psat=28.5 mW, τ s=100psec, a=3.10-20m2, No=1.1.1024m-3, Γ=0.3, A=0.2.10-12 m2. Solid lines correspond to the results obtained by solving (4–7), whereas (*) curves represent the numerical solution of (1)–(2). Ω21+100MHz.

Figure 3:
Figure 3:

PRF-up vs the value of PRFin both expressed in dBm for a standard SOA based RF mixer,. taking the LO Rf power as a parameter. (device parameters are given in the text).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

S z = Γ a ( N N o ) S α L S
N t = I ( t , z ) e V N τ s v g a ( N N o ) S
I ( t ) = I ¯ + Δ I ( z , Ω LO ) e j Ω LO t + Δ I * ( z , Ω LO ) e j Ω LO t
+ Δ I ( z , Ω S ) e j Ω S t + Δ I * ( Ω S ) e j Ω S t
Y ( z , t ) = Y ¯ ( z ) + Δ Y ( z , Ω LO ) e j Ω LO t + Δ Y * ( z , Ω LO ) e j Ω LO t
+ Δ Y ( z , Ω s ) e j Ω s t + Δ Y * ( Ω s ) e j Ω s t +
+ Δ Y ( z , 2 Ω LO ) e j 2 Ω LO t + Δ Y * ( z , 2 Ω LO ) e j 2 Ω LO t +
Δ Y ( z , 2 Ω s ) e j 2 Ω s t + Δ Y * ( 2 Ω s ) e j 2 Ω s t +
+ Δ Y ( z , Ω LO Ω S ) e j ( Ω LO Ω s ) t + Δ Y * ( z , Ω LO Ω s ) e j ( Ω LO Ω s ) t +
Δ Y ( z , Ω LO + Ω s ) e j ( Ω LO + Ω s ) t + Δ Y * ( z , Ω LO + Ω s ) e j ( Ω LO + Ω s ) t
d S ¯ d z = ( g sat α L ) S ¯
d Δ S ( Ω i ) d z = ( g sat α L β ( Ω i ) ) Δ S ( Ω i ) + Γ Δ I ( Ω i ) e V v g g sat
d Δ S ( 2 Ω i ) d z = ( g sat α L β ( 2 Ω i ) ) Δ S ( 2 Ω i ) +
+ ( g sat β ( 2 Ω i ) g sat ) { Γ a τ S Δ S ( Ω i ) Q ( Ω i ) x x [ Δ I ( Ω i ) e V g sat v g Γ Δ S ( Ω i ) ] }
d Δ S ( Ω LO ± Ω S ) d z = ( g sat α L β ( Ω LO ± Ω S ) ) Δ S ( Ω LO ± Ω S ) +
Γ a τ S ( g sat β ( Ω LO ± Ω S ) g sat )
{ Δ S ( Ω S ) Q ( Ω LO ) ( Δ I ( Ω LO ) e V g sat v g Δ S ( Ω LO ) Γ ) + Δ S ( Ω LO ) Q ( * ) ( Ω S ) ( Δ I ( Ω S ) e V g sat v g Δ S ( * ) ( Ω S ) Γ ) }
P RFin = Δ I ( Ω s ) 2 Z m 2
P RF up = R ( ħ w v g A ) Δ S ( Ω LO + Ω s ) 2 Z r 2
P RF down = R ( ħ w v g A ) Δ S ( Ω LO Ω s ) 2 Z r 2

Metrics